- 相關(guān)推薦
《勾股定理》優(yōu)秀教案優(yōu)秀
作為一名人民教師,常常要寫(xiě)一份優(yōu)秀的教案,教案是備課向課堂教學(xué)轉(zhuǎn)化的關(guān)節(jié)點(diǎn)。那么教案應(yīng)該怎么寫(xiě)才合適呢?以下是小編收集整理的《勾股定理》優(yōu)秀教案優(yōu)秀,僅供參考,大家一起來(lái)看看吧。
《勾股定理》優(yōu)秀教案優(yōu)秀1
課題:
勾股定理
課型:
新授課
課時(shí)安排:
1課時(shí)
教學(xué)目的:
一、知識(shí)與技能目標(biāo)理解和掌握勾股定理的內(nèi)容,能夠靈活運(yùn)用勾股定理進(jìn)行計(jì)算,并解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
二、過(guò)程與方法目標(biāo)通過(guò)觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。
三、情感、態(tài)度與價(jià)值觀目標(biāo)了解中國(guó)古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛(ài)國(guó)熱情;學(xué)生通過(guò)自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時(shí)體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。
教學(xué)重點(diǎn):
引導(dǎo)學(xué)生經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,并能運(yùn)用勾股定理解決一些簡(jiǎn)單的實(shí)際問(wèn)題
教學(xué)難點(diǎn):
用面積法方法證明勾股定理
課前準(zhǔn)備:
多媒體ppt,相關(guān)圖片
教學(xué)過(guò)程:
。ㄒ唬┣榫硨(dǎo)入
1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹(shù),20xx年國(guó)際數(shù)學(xué)大會(huì)會(huì)標(biāo)等。通過(guò)圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價(jià)值。
2、多媒體課件演示FLASH小動(dòng)畫(huà)片:某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?已知一直角三角形的兩邊,如何求第三邊?學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會(huì)有辦法解決了。
。ǘ⿲W(xué)習(xí)新課問(wèn)題一是等腰直角三角形的情形(通過(guò)多媒體給出圖形),判斷外圍三個(gè)正方形面積有何關(guān)系?相傳2500年前,畢達(dá)哥拉斯(古希臘著名的哲學(xué)家、數(shù)學(xué)家、天文學(xué)家)有一次在朋友家做客時(shí),發(fā)現(xiàn)朋友家里用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關(guān)系。你能觀察圖中的地面,看看能發(fā)現(xiàn)什么?對(duì)于等腰直角三角形有這樣的性質(zhì):兩直邊的平方和等于斜邊的平方那么對(duì)于一般的直角三角形是否也有這樣的性質(zhì)呢?請(qǐng)大家畫(huà)一個(gè)任意的直角三角形,量一量,算一算。問(wèn)題二是一般直角三角形的情形,判斷這時(shí)外圍三個(gè)正方形的面積是否也存在這種關(guān)系?通過(guò)這個(gè)觀察和驗(yàn)算這個(gè)直角三角形外圍的.三個(gè)正方形面積之間的關(guān)系,同學(xué)們發(fā)現(xiàn)了什么規(guī)律嗎?通過(guò)前面對(duì)兩個(gè)問(wèn)題的驗(yàn)證,可以得到勾股定理:如果直角三角形的兩直角邊長(zhǎng)分別為a、b,斜邊為c,那么a2+b2=c2。
(三)鞏固練習(xí)
1、如果一個(gè)直角三角形的兩條邊長(zhǎng)分別是6厘米和8厘米,那么這個(gè)三角形的周長(zhǎng)是多少厘米?
2、解決課程開(kāi)始時(shí)提出的情境問(wèn)題。
。ㄋ模┬〗Y(jié)
1、背景知識(shí)介紹
、佟吨荀滤銖健分,西周的商高在公元一千多年前發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律;
、诳滴鯏(shù)學(xué)專(zhuān)著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是他的獨(dú)創(chuàng)。
2、通過(guò)這節(jié)課的學(xué)習(xí),你會(huì)寫(xiě)方程了嗎?你有什么收獲和體會(huì)?
。ㄎ澹┳鳂I(yè)練習(xí)18.1中的1、2、3題。板書(shū)設(shè)計(jì):勾股定理:如果直角三角形的兩直角邊長(zhǎng)分別為a、b,斜邊為c,那么a2+b2=c2。
《勾股定理》優(yōu)秀教案優(yōu)秀2
一、教學(xué)目標(biāo)
。ㄒ唬┙虒W(xué)知識(shí)點(diǎn)
1、掌握勾股定理,了解利用拼圖驗(yàn)證勾股定理的方法、
2、運(yùn)用勾股解決一些實(shí)際問(wèn)題、
(二)能力訓(xùn)練要求
1、學(xué)會(huì)用拼圖的方法驗(yàn)證勾股定理,培養(yǎng)學(xué)生的創(chuàng)新能力和解決實(shí)際問(wèn)題的能力、
2、在拼圖過(guò)程中,鼓勵(lì)學(xué)生大膽聯(lián)想,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識(shí)、
。ㄈ┣楦信c價(jià)值觀要求
利用拼圖的方法驗(yàn)證勾股定理,是我國(guó)古代數(shù)學(xué)家的一大貢獻(xiàn)、借助對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育、并在拼圖的過(guò)程中獲得學(xué)習(xí)數(shù)學(xué)的快樂(lè),提高學(xué)習(xí)數(shù)學(xué)的興趣、
二、教學(xué)重、難點(diǎn)
重點(diǎn):勾股定理的證明及其應(yīng)用、
難點(diǎn):勾股定理的證明、
三、教學(xué)方法
教師引導(dǎo)和學(xué)生自主探索相結(jié)合的方法、
在用拼圖的.方法驗(yàn)證勾股定理的過(guò)程中、教師要引導(dǎo)學(xué)生善于聯(lián)想,將形的問(wèn)題與數(shù)的問(wèn)題聯(lián)系起來(lái),讓學(xué)生自主探索,大膽地聯(lián)系前面知識(shí),推導(dǎo)出勾股定理,并自己嘗試用勾股定理解決實(shí)際問(wèn)題、
四、教具準(zhǔn)備
1、每個(gè)學(xué)生準(zhǔn)備一張硬紙板;
2、投影片三張:
第一張:?jiǎn)栴}串(記作1、1、2 A);
第二張:議一議(記作1、1、2 B);
第三張:例題(記作1、1、2 C)。
五、教學(xué)過(guò)程
Ⅰ、創(chuàng)設(shè)問(wèn)題情景,引入新課
[師]我們?cè)鴮W(xué)習(xí)過(guò)整式的運(yùn)算,其中平方差公式(a+b)(a—b)=a2—b2;完全平方公式(ab)2=a22ab+b2是非常重要的內(nèi)容、誰(shuí)還能記得當(dāng)時(shí)這兩個(gè)公式是如何推出的?
[生]利用多項(xiàng)式乘以多項(xiàng)式的法則從公式的左邊就可以推出右邊、例如(a+b)(a—b)=a2—ab+ab—b2=a2—b2,所以平方差公式是成立的。
[生]還可以用拼圖的方法來(lái)推出、例如:(a+b)2=a2+2ab+b2、我們可以用一個(gè)邊長(zhǎng)為a的正方形,一個(gè)邊長(zhǎng)為b的正方形,兩個(gè)長(zhǎng)和寬分別為a和b的長(zhǎng)方形可拼成如下圖所示的邊長(zhǎng)為(a+b)的正方形,那么這個(gè)大的正方形的面積可以表示為(a+b)2;又可以表示為a2+2ab+b2、所以(a+b)2=a2+2ab+b2。
【《勾股定理》優(yōu)秀教案優(yōu)秀】相關(guān)文章:
勾股定理教案02-11
勾股定理的教案10-13
數(shù)學(xué)勾股定理教案11-02
優(yōu)秀教案優(yōu)秀09-25
【熱】勾股定理教案15篇11-08
優(yōu)秀的教案11-16