91国產乱老熟视頻老熟女,97在线起碰视频,麻豆Av一区二区,亚洲视频国产91www.

<pre id="jdrot"></pre>

<td id="jdrot"><strong id="jdrot"></strong></td>
      <pre id="jdrot"></pre>

          當(dāng)前位置:9136范文網(wǎng)>教育范文>教學(xué)反思>一元二次方程教學(xué)反思

          一元二次方程教學(xué)反思

          時(shí)間:2025-01-20 08:18:55 教學(xué)反思 我要投稿

          一元二次方程教學(xué)反思(錦集7篇)

            身為一位優(yōu)秀的老師,我們需要很強(qiáng)的課堂教學(xué)能力,借助教學(xué)反思我們可以學(xué)習(xí)到很多講課技巧,教學(xué)反思應(yīng)該怎么寫呢?以下是小編為大家整理的一元二次方程教學(xué)反思,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

          一元二次方程教學(xué)反思(錦集7篇)

          一元二次方程教學(xué)反思1

            一、學(xué)生知識(shí)狀況分析

            學(xué)生已經(jīng)學(xué)習(xí)了一元二次方程及其解法,對(duì)于方程的解及解方程并不陌生,實(shí)際問題的應(yīng)用,有些抽象,雖然學(xué)生在七、八年級(jí)已經(jīng)進(jìn)行了有關(guān)的訓(xùn)練,但還是有一定的難度。

            本節(jié)內(nèi)容針對(duì)的學(xué)生是才進(jìn)入九年級(jí)的學(xué)生,他們已經(jīng)具備了一定的抽象思維和建模能力,也具備一定的生活經(jīng)驗(yàn)和初步的解一元二次方程的經(jīng)驗(yàn)。

            二、教學(xué)任務(wù)分析

            本節(jié)課的主要是發(fā)展學(xué)生抽象思維,強(qiáng)化學(xué)生的應(yīng)用意識(shí),使學(xué)生能通過抽象思維將一個(gè)應(yīng)用題抽象成一元二次方程使問題得以解決,這也是方程教學(xué)的重要任務(wù)。但學(xué)生抽象意識(shí)和能力的發(fā)展不是自發(fā)的,需要通過大量的應(yīng)用實(shí)例,在實(shí)際問題的解決中讓學(xué)生感受到其廣泛應(yīng)用,并在具體應(yīng)用中增強(qiáng)學(xué)生的應(yīng)用能力。因此,本節(jié)教學(xué)中需要選用大量的實(shí)際問題,通過列方程解決問題,并且在問題解決過程中,促進(jìn)學(xué)生分析問題、解決問題意識(shí)和能力的提高以及抽象思維的初步形成。顯然,這個(gè)任務(wù)并非某個(gè)教學(xué)活動(dòng)所能達(dá)成的,而應(yīng)在教學(xué)活動(dòng)中創(chuàng)設(shè)大量的問題解決的情境,在具體情境中發(fā)展學(xué)生的有關(guān)能力。為此,本節(jié)課的教學(xué)目標(biāo)是:

            知識(shí)目標(biāo):

            通過分析問題中的數(shù)量關(guān)系,抽象出方程解決問題,認(rèn)識(shí)方程模型的重要性,并總結(jié)運(yùn)用方程解決實(shí)際問題的一般過程。

            能力目標(biāo):

            1、經(jīng)歷分析,抽象和建模的過程,進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個(gè)有效的數(shù)學(xué)模型;

            2、能夠抽象出一元二次方程解決有關(guān)實(shí)際問題,能根據(jù)具體問題的實(shí)際意義檢驗(yàn)結(jié)果的合理性,進(jìn)一步培養(yǎng)學(xué)生分析問題、解決問題的意識(shí)和能力;

            情感態(tài)度價(jià)值觀:

            在問題解決中,經(jīng)歷一定的合作交流活動(dòng),進(jìn)一步發(fā)展學(xué)生合作交流的意識(shí)和能力。

            三、學(xué)法指導(dǎo)

            本課是學(xué)生學(xué)習(xí)完一元二次方程的解法后的應(yīng)用課,雖然學(xué)生在七八年級(jí)已經(jīng)進(jìn)行了一定的訓(xùn)練,但本課對(duì)學(xué)生而言還是有一定的'難度。本課采用啟發(fā)式、問題串討論式、合作學(xué)習(xí)相結(jié)合的方式,引導(dǎo)學(xué)生從已有的知識(shí)和生活經(jīng)驗(yàn)出發(fā),以教材提供的素材為基礎(chǔ),引導(dǎo)學(xué)生對(duì)對(duì)問題中的數(shù)量進(jìn)行分析從而抽象出方程解決問題;學(xué)生之間的合作交流、互助學(xué)習(xí),能更好地調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,更符合學(xué)生的認(rèn)知規(guī)律。無論是例題的分析還是練習(xí)的分析,盡可能地鼓勵(lì)學(xué)生動(dòng)腦、動(dòng)手、動(dòng)口,為學(xué)生提供展示自己聰明才智的機(jī)會(huì),并且在此過程中發(fā)現(xiàn)學(xué)生分析問題、解決問題的獨(dú)到見解以及思維的誤區(qū),更好地進(jìn)行學(xué)法指導(dǎo)。

            四、教學(xué)過程分析

            本課時(shí)分為以下五個(gè)教學(xué)環(huán)節(jié):第一環(huán)節(jié):回憶鞏固,情境導(dǎo)入;第二環(huán)節(jié):做一做,探索新知;第三環(huán)節(jié):練一練,鞏固新知;第四環(huán)節(jié):收獲與感悟;第五環(huán)節(jié):布置作業(yè)。

            第一環(huán)節(jié);情境導(dǎo)入

            活動(dòng)內(nèi)容:提出問題:還記得梯子下滑的問題嗎?

            在這個(gè)問題中,梯子頂端下滑1米時(shí),梯子底端滑動(dòng)的距離大于1米,那么梯子頂端下滑幾米時(shí),梯子底端滑動(dòng)的距離和它相等呢?如果梯子長度是13米,梯子頂端下滑的距離與梯子底端滑動(dòng)的距離可能相等嗎?如果相等,那么這個(gè)距離是多少?

            分組討論:

            怎么設(shè)未知數(shù)?在這個(gè)問題中存在怎樣的等量關(guān)系?如何利用勾股定理抽象出方程?

            活動(dòng)目的:以學(xué)生所熟悉的梯子下滑問題為素材,以前面所學(xué)的勾股定理為切入點(diǎn),用熟悉的情境激發(fā)學(xué)生解決問題的欲望,用學(xué)生已有的知識(shí)為支點(diǎn)抽象出一元二次方程使問題得以解決,進(jìn)一步讓學(xué)生體會(huì)數(shù)形結(jié)合的思想。

            活動(dòng)的實(shí)際效果:大部分學(xué)生能夠聯(lián)系以前學(xué)過的勾股定理的三邊關(guān)系抽象出方程對(duì)上述問題進(jìn)行思考,能夠在老師的引導(dǎo)下主動(dòng)地探究問題,取得了比較理想的效果,而且也調(diào)動(dòng)了學(xué)生的學(xué)習(xí)熱情,激發(fā)了學(xué)生的思維,為后面的探索奠定了良好的基礎(chǔ)。

            第二環(huán)節(jié)探索新知

            活動(dòng)內(nèi)容:見課本P53頁例1:

            如圖:某海軍基地位于A處,在其正南方向200海里處有一重要目標(biāo)B,在B的正東方向200海里處有一重要目標(biāo)C,小島D位于AC的中點(diǎn),島上有一補(bǔ)給碼頭。小島F位于BC中點(diǎn)。一艘軍艦從A出發(fā),經(jīng)B到C勻速巡航,一艘補(bǔ)給船同時(shí)從D出發(fā),沿南偏西方向勻速直線航行,欲將一批物品送達(dá)軍艦。

            已知軍艦的速度是補(bǔ)給船的2倍,軍艦在由B到C的途中與補(bǔ)給船相遇,那么相遇時(shí)補(bǔ)給船航行了多少海里?(結(jié)果精確到0.1海里)

            在教學(xué)中要給學(xué)生充分的時(shí)間去審清題意,分析各量之間的關(guān)系,不能粗線條解決。在講解過程中可逐步分解難點(diǎn):審清題意;找準(zhǔn)各條有關(guān)線段的長度關(guān)系;通過抽象思維建立方程模型,之后求解。

            實(shí)際應(yīng)用問題比較抽象,因此教學(xué)中老師要給學(xué)生充分的時(shí)間去審清題意,讓學(xué)生自己反復(fù)審題,弄清各量之間的關(guān)系,分析題目中的已知條件和要求解的問題,并在這個(gè)前提下抽象出圖形中各條線段所表示的量,弄清它們之間的關(guān)系,從而抽象出方程模型解決問題。

            在學(xué)生分析題意遇到困難時(shí),教學(xué)中可設(shè)置問題串分解難點(diǎn):

            (1)要求DE的長,需要如何設(shè)未知數(shù)?

           。2)怎樣建立含DE未知數(shù)的等量關(guān)系?從已知條件中能找到嗎?

           。3)利用勾股定理建立等量關(guān)系,如何構(gòu)造直角三角形?

           。4)選定后,三條邊長都是已知的嗎?DE,DF,EF分別是多少?

            學(xué)生在問題串的引導(dǎo)下,逐層分析,在分組討論后抽象出題目中的等量關(guān)系即:

            速度等量:V軍艦=2×V補(bǔ)給船

            時(shí)間等量:t軍艦=t補(bǔ)給船

            三邊數(shù)量關(guān)系:弄清圖形中線段長表示的量:已知AB=BC=200海里,DE表示補(bǔ)給船的路程,AB+BE表示軍艦的路程。

            學(xué)生在此基礎(chǔ)上選準(zhǔn)未知數(shù),用未知數(shù)表示出線段:DE、EF的長,根據(jù)勾股定理抽象出方程求解,并判斷解的合理性。

            鞏固練習(xí):

            1、一個(gè)直角三角形的斜邊長為7cm,一條直角邊比另一條直角邊長1cm,那么這個(gè)直角三角的面積是多少?

            文本框:8cm2、如圖:在RtACB中,∠C=90°,點(diǎn)P、Q同時(shí)由A、B兩點(diǎn)出發(fā)分別沿AC、BC方向向點(diǎn)C勻速移動(dòng),它們的速度都是1m/s,幾秒后PCQ的面積為RtACB面積的一半?

            3、在寬為20m,長為32m的矩形耕地上,修筑同樣寬的三條道路(兩條縱向,一條橫向,橫向與縱向互相垂直),把耕地分成大小相等的六塊作試驗(yàn)田,要使試驗(yàn)田面積為570平方米,問道路應(yīng)為多寬?

            說明:三個(gè)題目的設(shè)計(jì)從簡單問題入手,第一題通過勾股定理抽象出一元二次方程解決直角三角形邊長問題;第2題構(gòu)造了一個(gè)可變的直角三角形,抽象出方程解決面積問題;第三題也是面積問題,在這個(gè)問題中常設(shè)道路寬為x米,通過平移道路使六塊田地變成一塊田地,從而根據(jù)矩形面積公式抽象出方程解決問題。

            活動(dòng)目的:一元二次方程的應(yīng)用題的類型較多,像數(shù)字問題、面積問題、平均增長(或降低)率問題、利潤問題等;本節(jié)課以教材上的引例作為出發(fā)點(diǎn),作為素材來呈現(xiàn),可以將應(yīng)用類型作適當(dāng)?shù)耐卣,在練?xí)中將教材中的應(yīng)用問題歸類呈現(xiàn)出來,便于學(xué)生理解和掌握。本課由數(shù)形結(jié)合問題拓展到面積問題,后面可以在練習(xí)中增加數(shù)字問題,為學(xué)生呈現(xiàn)更多的應(yīng)用類型,讓學(xué)生在不同的情境中體會(huì)數(shù)學(xué)抽象和建模的重要性。

            活動(dòng)實(shí)際效果:應(yīng)用問題設(shè)置都經(jīng)過精心準(zhǔn)備。通過問題串的設(shè)立,將比較復(fù)雜、難以理解的題目分成多個(gè)小的題目去理解,使學(xué)生在不知不覺中克服困難,體會(huì)到通過抽象出方程解應(yīng)用題的三個(gè)重要環(huán)節(jié):整體系統(tǒng)的審清題意;尋找等量關(guān)系;正確求解并檢驗(yàn)解的合理性。采取的是一講一練,從鞏固練習(xí)的準(zhǔn)確程度上來看,學(xué)生掌握得比較好,能夠達(dá)到預(yù)期的效果。

            第三環(huán)節(jié):練一練,鞏固新知

            活動(dòng)內(nèi)容:

            1、在一塊正方形的鋼板上裁下寬為20cm的一個(gè)長條,剩下的長方形鋼板的面積為4800cm2。求原正方形鋼板的面積。

            2、有這樣一道阿拉伯古算題:有兩筆錢,一多一少,其和等于20,積等于96,多的一筆錢被許諾賞給賽義德,那么賽義德得到多少錢?

            3、《九章算術(shù)》“勾股”章有一題:甲、乙二人同時(shí)從同一地點(diǎn)出發(fā),甲的速度為7,乙的速度為3。乙一直向東走,甲先向南走了10步,后又斜向北偏東方向走了一段后與乙相遇。那么相遇時(shí),甲、乙各走了多遠(yuǎn)?

            活動(dòng)目的:通過三道問題的解決,查缺補(bǔ)漏,了解學(xué)生的掌握情況和靈活運(yùn)用知識(shí)的程度。在教學(xué)過程中要以學(xué)生為主體,引導(dǎo)學(xué)生自主發(fā)現(xiàn)、合作交流;顒(dòng)實(shí)際效果:學(xué)生在前面活動(dòng)中積累的經(jīng)驗(yàn),可以幫助學(xué)生比較順利地分析上述問題,遇有疑難可以讓學(xué)生在合作交流中解決,學(xué)生在訓(xùn)練過程中更加理解數(shù)學(xué)抽象和建模的重要性.大部分學(xué)生能夠獨(dú)立解決問題。

            第四環(huán)節(jié):收獲與感悟

            活動(dòng)內(nèi)容:提問:

            1、列方程解應(yīng)用題的關(guān)鍵;

            2、列方程解應(yīng)用題的步驟;

            3、列方程應(yīng)注意的一些問題。

            學(xué)生在學(xué)習(xí)小組中回顧與反思,并進(jìn)行組間交流發(fā)言。

            活動(dòng)目的:鼓勵(lì)學(xué)生回顧本節(jié)課知識(shí)方面有哪些收獲,解題技能方面有哪些提高,還有什么疑難問題希望得到解決;通過對(duì)三個(gè)問題的解決,加深學(xué)生通過抽象思維抽象出方程解決實(shí)際問題的意識(shí)和能力;并且通過學(xué)生間的合作學(xué)習(xí)幫助不同層次的孩子解決實(shí)際困難,增強(qiáng)孩子學(xué)好數(shù)學(xué)的信心。

            活動(dòng)實(shí)際效果:學(xué)生通過回顧本節(jié)課的學(xué)習(xí)過程,體會(huì)利用抽象思維抽象出一元二次方程解決實(shí)際問題的方法和技巧,進(jìn)一步提高自己解決問題的能力。

            第五環(huán)節(jié):布置作業(yè)

            1、甲乙兩個(gè)小朋友的年齡相差4歲,兩個(gè)人的年齡相乘積等于45,你知道這兩個(gè)小朋友幾歲嗎?

            2、一塊長方形草地的長和寬分別為20m和15m,在它四周外圍環(huán)繞著寬度相等的小路,已知小路的面積為246,求小路的寬度。

            3、一個(gè)兩位數(shù)等于其數(shù)字之積的3倍,其十位數(shù)比個(gè)位數(shù)小2,求這兩位數(shù)。

          一元二次方程教學(xué)反思2

            終于是第二次拿著自己準(zhǔn)備的課件再次走上了期許已久的三尺講臺(tái)。周二的第五節(jié)課雖然只有短短是35分鐘,但是這卻是自我感覺最好的一堂課——《配方法講一元二次方程》。這是一元二次方程解法的第二課時(shí),其實(shí)總的內(nèi)容并不是很多,而且對(duì)于初中課堂來說課堂的重點(diǎn)是老師的講解和學(xué)生的練習(xí)要相互結(jié)合,最好能讓學(xué)生在完成自學(xué)檢測的過程中總結(jié)出方法,熟練用配方法解一元二次方程的一般步驟。盡可能讓同學(xué)在經(jīng)歷配方法的探索中培養(yǎng)學(xué)生的動(dòng)手解決問題的能力,理解解方程中的程序化,體會(huì)化歸思想。在整節(jié)課的實(shí)際和進(jìn)行的過程中,我比較滿意的是以下幾個(gè)方面:

            一、這節(jié)課基本是按“1:1有效教學(xué)模式”來進(jìn)行的;在時(shí)間方面,這節(jié)課保證了學(xué)生有足夠的時(shí)間進(jìn)行練習(xí)。自從我觀摩了西南大學(xué)附屬中學(xué)的翻轉(zhuǎn)課堂以來,從這里面得到了一個(gè)道理:只有放心徹底把時(shí)間還給學(xué)生,學(xué)生的自主能動(dòng)性才能得到充分的`發(fā)展。因?yàn)閷W(xué)習(xí)始終是學(xué)生自主的行為,如果學(xué)生的自主性得不到發(fā)展,學(xué)生一直是被動(dòng)地學(xué)習(xí),他們不積極,老師在課堂上很累。但在這節(jié)課中重點(diǎn)是學(xué)生練習(xí),總結(jié)方法和規(guī)律;很多東西雖然掌握的層次不同,但都是他們真正掌握的知識(shí)。

            二、課時(shí)內(nèi)容中對(duì)用配方法解一元二次方程的一般步驟總結(jié)的比較到位,學(xué)生在解題時(shí),PPT上的例題解題過程都會(huì)保留在屏幕上,所以可以很好地對(duì)照,使他們感覺解決這樣的問題是很容易的。從二次項(xiàng)系數(shù)是1的類型過度到二次項(xiàng)系數(shù)是2的方程求解,運(yùn)用矛盾激發(fā)學(xué)生思考遇到二次項(xiàng)系數(shù)是2的方程要先將二次項(xiàng)系數(shù)化1 。

            但是通過這節(jié)課,我也發(fā)現(xiàn)了我在課堂教學(xué)中的一切不足,例如,面對(duì)學(xué)生,我的教學(xué)語言中存在很多問題,題目設(shè)計(jì)不但要精,還要具有針對(duì)性,讓學(xué)生不做無用功,而又要把所有的知識(shí)點(diǎn)通過題目深刻理解。

            一節(jié)課或幾節(jié)課或許對(duì)我的教學(xué)沒有多大的幫助,但是只要我能夠在教學(xué)中不斷的摸索,不斷地尋找不足,改進(jìn)不足,我相信一切都會(huì)不斷變好的。感恩!

          一元二次方程教學(xué)反思3

            配方法不僅是解一元二次方程的方法之一既是對(duì)前面知識(shí)的復(fù)習(xí)也是其它許多數(shù)學(xué)問題的一種數(shù)學(xué)思想方法,其發(fā)揮的作用和意義十分重要。原以為學(xué)生不容易掌握。誰知從學(xué)生的學(xué)習(xí)情況來看,效果普遍良好。從本節(jié)課的具體教學(xué)過程來分析,我有以下幾點(diǎn)體會(huì)。

            1、善于引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律,注重培養(yǎng)學(xué)生的`觀察分析歸納問題的能力。首先復(fù)習(xí)完全平方公式及有關(guān)計(jì)算,讓學(xué)生進(jìn)行一些完形填空。然后讓學(xué)生注意觀察總結(jié)規(guī)律,然后小組總結(jié)交流得出結(jié)論。即配方法的具體步驟:

           、佼(dāng)二次項(xiàng)系數(shù)為1時(shí)將移常數(shù)項(xiàng)到方程右邊。

           、诜匠虄蛇呁瑫r(shí)加上一次項(xiàng)系數(shù)一半的平方。

           、刍匠套筮厼橥耆椒绞。

           、埽ㄈ舴匠逃疫厼榉秦(fù)數(shù))利用直接開平方法解得方程的根。這樣一來學(xué)生就很容易掌握了配方法,理解起來也很容易,運(yùn)用起來也很方便。

            2、習(xí)題設(shè)計(jì)由易到難,符合學(xué)生的認(rèn)知規(guī)律。在掌握了二次項(xiàng)系數(shù)為一的后。提出問題:當(dāng)二次項(xiàng)系數(shù)不為一時(shí)你會(huì)用配方法解決嗎?不少學(xué)生立即答道把系數(shù)化為一不就夠了嗎。于是學(xué)生很快總結(jié)出用配方法解一元二次方程的一般步驟:

           、倩雾(xiàng)系數(shù)為1。

           、谝瞥(shù)項(xiàng)到方程右邊。

           、鄯匠虄蛇呁瑫r(shí)加上一次項(xiàng)系數(shù)一半的平方。

            ④化方程左邊為完全平方式。

            ⑤(若方程右邊為非負(fù)數(shù))利用直接開平方法解得方程的根。

            3、恰到好處的設(shè)置懸念,為下節(jié)課做鋪墊。我問學(xué)生配方法是不是可以解決“任何一個(gè)”一元二次方程?若不能,如何來確定它的“適用范圍”?多數(shù)學(xué)生迅速開動(dòng)腦筋并發(fā)現(xiàn)“配方法”能簡便解決一部分“特殊方程”,而例如x+2x=0,4x+4x+1=0,2y-3y+3=0這些方程用“配方法”的話就相當(dāng)麻煩,不如用“求根公式”或“因式分解”來解簡單,這些方法后面我們將要進(jìn)一步學(xué)習(xí)。由此,我抓住這個(gè)契機(jī)向?qū)W生引申:解決一個(gè)問題的途徑可能有多種思路,但為了提高學(xué)習(xí)效率,我們盡量選擇一個(gè)簡便易行的方案,這也是解決數(shù)學(xué)問題的一種必備思想。

            4、在我本節(jié)課的教學(xué)當(dāng)中,也有如下不妥之處:

            ①對(duì)不同層次的學(xué)生要求程度不適當(dāng)。

            ②在提示和啟發(fā)上有些過度。

           、蹫閷W(xué)生提供的思考問題時(shí)間較少,導(dǎo)致少數(shù)學(xué)生對(duì)本節(jié)知識(shí)“囫圇吞棗”,而最終“消化不良”,在以后的課堂教學(xué)中,我會(huì)力爭克服以上不足。

          一元二次方程教學(xué)反思4

            在日常生活中,許多問題都可以通過建立一元二次方程這個(gè)模型進(jìn)行求解,然后回到實(shí)踐問題中進(jìn)行解釋和檢驗(yàn),從而體會(huì)數(shù)學(xué)建模的思想方法,解決這類問題的關(guān)鍵是弄清實(shí)際問題中所包含的數(shù)量關(guān)系。

            本節(jié)內(nèi)容教材提供了與生活密切相關(guān),且有一定思考和探究性的問題,所以在教學(xué)中我讓學(xué)生綜合已有的知識(shí),經(jīng)過自主探索和合作交流嘗試解決,提高學(xué)生的思維品質(zhì)和進(jìn)行探究學(xué)習(xí)的能力。主要有以下幾個(gè)成功之處:

            1、讓學(xué)生自主交流方法,充分展示學(xué)生不同層次的思維,互相學(xué)習(xí),互相促進(jìn),從而創(chuàng)建平等、輕松的學(xué)習(xí)氛圍。

            在出示了例7后,我提示學(xué)生解決此類問題可以自己畫出草圖,分析題目中的等量關(guān)系,學(xué)生根據(jù)題意很快可以畫出圖形,然后,我讓他們找出題目中可以寫等量關(guān)系的條件,根據(jù)條件寫出文字的等量關(guān)系。在這個(gè)環(huán)節(jié)有的學(xué)生遇到了困難,于是,我就讓他們互相討論,通過討論,大部分學(xué)生可以寫出等量關(guān)系,我再讓會(huì)的學(xué)生說出理由。在這個(gè)教學(xué)過程中,學(xué)生互相學(xué)習(xí),互相促進(jìn),輕松地學(xué)會(huì)了知識(shí)。

            2、讓學(xué)生自主歸納,總結(jié)方法,尊重學(xué)生的個(gè)性選擇,學(xué)生的集體智慧更符合學(xué)生自己的口味,比教師說教更易于被學(xué)生接受。

            例7的'解答還有一種更簡單的方法,我讓學(xué)生觀察圖形,在圖形上做文章,還是讓他們自主探索,討論,很快有一部分學(xué)生想到了把圖形中的道路平移到一邊的方法,這樣就把種植面積集中起來,方程就好列了。這時(shí),我就讓學(xué)生上來講述方法。學(xué)生用自己的語言講述,這樣其他人接受起來更快一些。并且,學(xué)生還總結(jié)此類問題的解決方法——將圖形平移,在以下練習(xí)的幾道題中都能得心應(yīng)手的解答了。由此可見,通過自己思考學(xué)到的知識(shí)能夠靈活應(yīng)用,且掌握的好。

            在這節(jié)課的教學(xué)中也存在一些不足之處,教材中在例題之前設(shè)計(jì)了一個(gè)應(yīng)用,在解決這個(gè)問題上耽誤了時(shí)間,延誤了下面的教學(xué),導(dǎo)致設(shè)計(jì)的練習(xí)題沒有做完,所以在下次教學(xué)時(shí),這個(gè)應(yīng)用問題只讓學(xué)生列出方程即可,不必在解答上花費(fèi)時(shí)間。另外,練習(xí)設(shè)計(jì)過于單一,只涉及到了例題這種類型的練習(xí),變式練習(xí)題少,所以,在下次教學(xué)時(shí),要設(shè)計(jì)兩道不同題型的題目。

            由這節(jié)課的教學(xué)我領(lǐng)悟到,數(shù)學(xué)學(xué)習(xí)是學(xué)生自己建構(gòu)數(shù)學(xué)知識(shí)的活動(dòng),學(xué)生應(yīng)該主動(dòng)探索知識(shí)的建構(gòu)者,而不是模仿者,教學(xué)應(yīng)促進(jìn)學(xué)生主體的主動(dòng)建構(gòu),離開了學(xué)生積極主動(dòng)的學(xué)習(xí),教師講得再好,也會(huì)經(jīng)常出現(xiàn)“教師講完了,學(xué)生仍不會(huì)”的現(xiàn)象。所以,在以后的教學(xué)中,我要更有意識(shí)的多給學(xué)生自主探索、合作交流的機(jī)會(huì),更加激發(fā)學(xué)生的學(xué)習(xí)積極性,使學(xué)生在他們的最近發(fā)展區(qū)發(fā)展。

          一元二次方程教學(xué)反思5

            新課程要求培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)與能力,作為數(shù)學(xué)教師,我們要充分利用已有的生活經(jīng)驗(yàn),把所學(xué)的數(shù)學(xué)知識(shí)用到現(xiàn)實(shí)中去,體會(huì)數(shù)學(xué)在現(xiàn)實(shí)中應(yīng)用價(jià)值。

            這節(jié)課是“列一元二次方程解應(yīng)用題(3),講授在營銷問題中以學(xué)生熟悉的現(xiàn)實(shí)生活為問題的背景,讓學(xué)生從具體的問題情境中抽象出數(shù)量關(guān)系,歸納出變化規(guī)律,并能用數(shù)學(xué)符號(hào)表示,最終解決實(shí)際問題。這類注重聯(lián)系實(shí)際考查學(xué)生數(shù)學(xué)應(yīng)用能力的問題,體現(xiàn)時(shí)代性,體會(huì)數(shù)學(xué)在現(xiàn)實(shí)生活中的作用。

            通過本節(jié)課的教學(xué),總體感覺調(diào)動(dòng)了學(xué)生的積極性,能夠充分發(fā)揮學(xué)生的主體作用,以現(xiàn)實(shí)生活情境問題入手,激發(fā)了學(xué)生思維的'火花,具體我以為有以下幾個(gè)特點(diǎn):

            一、課前準(zhǔn)備的內(nèi)容了解一元二次應(yīng)用題的步驟,本節(jié)課的學(xué)習(xí)需準(zhǔn)備的兩個(gè)關(guān)系式。設(shè)計(jì)三個(gè)列代數(shù)式的題為學(xué)習(xí)例題時(shí)降低難度。

            二、本節(jié)課例題,是營銷問題中的一個(gè)典型例題,我在引導(dǎo)學(xué)生解決此題時(shí),不僅關(guān)注結(jié)果更關(guān)注過程,讓學(xué)生養(yǎng)成良好的解題習(xí)慣。

            三、通過變式訓(xùn)練,讓學(xué)生由淺入深,由易到難,也讓學(xué)生解決問題的能力逐級(jí)上升。在講完例題的基礎(chǔ)上,將更多教學(xué)時(shí)間留給學(xué)生,這樣學(xué)生感到成功機(jī)會(huì)增加,從而有一種積極的學(xué)習(xí)態(tài)度,同時(shí)學(xué)生在學(xué)習(xí)中相互交流、相互學(xué)習(xí),共同提高。

            四、在課堂中始終貫徹?cái)?shù)學(xué)源于生活又用于生活的數(shù)學(xué)觀念,同時(shí)用方程來解決問題,使學(xué)生樹立一種數(shù)學(xué)建模的思想。

            五、課堂上多給學(xué)生展示的機(jī)會(huì),比如我所設(shè)計(jì)練習(xí)題可用不同方法去求解,讓學(xué)生走上講臺(tái),向同學(xué)們展示自己的聰明才智。同時(shí)在這個(gè)過程中,更有利于發(fā)現(xiàn)學(xué)生分析問題與解決問題獨(dú)到見解及思維誤區(qū),以便指導(dǎo)今后教學(xué)?傊ㄟ^各種啟發(fā)、激勵(lì)的教學(xué)手段,幫助學(xué)生形成積極主動(dòng)求知態(tài)度,課堂收效大。

            六、需改進(jìn)的方面:

            1、由于怕完不成任務(wù),給學(xué)生獨(dú)立思考時(shí)間安排有些不合理,這樣容易讓思維活躍的學(xué)生的回答代替了其他學(xué)生的思考,掩蓋了其他學(xué)生的疑問。例如練習(xí)題1有多種解法,課后一些學(xué)生與老師交流,但課上沒有得到充分的展示。

            2、在激勵(lì)評(píng)價(jià)學(xué)生方面做胡還不夠,例如學(xué)生在解決自主探究最后一個(gè)題目時(shí),有同學(xué)利用第三種方法很巧妙,當(dāng)時(shí)沒有給予學(xué)生很好的激勵(lì)及評(píng)價(jià)

            3、下課后很多學(xué)生和老師溝通課上一生的錯(cuò)誤問題,但他們上課并不敢提出,有點(diǎn)卻場,所以平時(shí)要培養(yǎng)學(xué)生敢想敢說敢于發(fā)表

          一元二次方程教學(xué)反思6

            方程是處理問題的一種很好的途徑,而解方程又是這種途徑必須要掌握的。

            1、這一節(jié)課的主要內(nèi)容是要求學(xué)生掌握一元二次方程的定義,定義主要從這兩個(gè)方面來掌握,首先等號(hào)的兩邊是整式,且只含有一個(gè)未知數(shù),其次未知數(shù)的最高次數(shù)是2。要是單純從知識(shí)點(diǎn)上來看的話,這一節(jié)課的內(nèi)容很少,教師可以用很短的時(shí)間講完這節(jié)課,但是教材的設(shè)計(jì)是從實(shí)際問題出發(fā),要求學(xué)生先列方程,將實(shí)際問題的方程化為一般的形式后去觀察方程的形式,通過觀察找到幾個(gè)方程的共同點(diǎn),再由學(xué)生總結(jié)一元二次方程的定義,表面上看教材的安排很羅嗦,其實(shí)這樣安排的好處就是將難點(diǎn)分散了,因?yàn)橐辉畏匠踢@一章有一個(gè)教學(xué)難點(diǎn)就是列方程解應(yīng)用題,在平時(shí)的.教學(xué)中將難點(diǎn)分散對(duì)于學(xué)生的學(xué)習(xí)應(yīng)該有很大的幫助。

            2、在求一元二次方程的各項(xiàng)系數(shù)的時(shí)候,有一個(gè)地方?jīng)]有處理好,本來按照習(xí)慣一般是將二次項(xiàng)系數(shù)化為正數(shù),但是在解題中就算二次項(xiàng)系數(shù)是負(fù)數(shù),給出的答案也是正確的,這樣的問題最好是給出方程的一般形式后,叫學(xué)生來求各項(xiàng)系數(shù)比較好一點(diǎn)。

          一元二次方程教學(xué)反思7

            通過本節(jié)課的教學(xué),我發(fā)現(xiàn):配方法不僅是解一元二次方程的方法之一,而且它還可作為其它許多數(shù)學(xué)問題的一種研究思想,其發(fā)揮的作用和意義十分重要。從學(xué)生的學(xué)習(xí)情況來看,效果普遍良好,且已基本掌握了這種數(shù)學(xué)方法,從本節(jié)課的具體教學(xué)過程來分析,我有以下幾點(diǎn)體會(huì)和認(rèn)識(shí)。

            1、學(xué)生對(duì)這塊知識(shí)的理解很好,在講解時(shí),我通過引例總結(jié)了配方法的具體步驟,即:

            ①化二次項(xiàng)系數(shù)為1;

           、谝瞥(shù)項(xiàng)到方程右邊;

            ③方程兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方;

            ④化方程左邊為完全平方式;⑤(若方程右邊為非負(fù)數(shù))利用直接開平方法解得方程的根。如上讓學(xué)生來掌握配方法,理解起來也很容易,然后再加以練習(xí)鞏固。

            2、在講解過程中,我提示學(xué)生,配方法是不是可以解決“任何一個(gè)”一元二次方程呢?若不能,如何來確定它的`“適用范圍”?多數(shù)學(xué)生迅速開動(dòng)腦筋并發(fā)現(xiàn)“配方法”能簡便解決一部分“特殊方程”,而例如x2+2x=0,4x2+4x+1=0,2y2-3y+1=0這些方程用“配方法”的話就相當(dāng)麻煩,不如用“求根公式”或“因式分解”來解簡單,由此,我抓住這個(gè)契機(jī)向?qū)W生引申:解決一個(gè)問題的途徑可能有多種思路,但為了提高學(xué)習(xí)效率,我們盡量選擇一個(gè)簡便易行的方案,這也是解決數(shù)學(xué)問題的一種必備思想。(這種說法也提示學(xué)生注意解一元二次方程每種方法的特點(diǎn)和適用環(huán)境)。

            3、當(dāng)然在這一塊知識(shí)的教學(xué)過程中,學(xué)生也出現(xiàn)了個(gè)別錯(cuò)誤,表現(xiàn)在:

           、俣雾(xiàng)系數(shù)沒有化為1就盲目配方;

            ②不能給方程“兩邊”同時(shí)配方;

           、叟浞街螅疫吺0,結(jié)果方程根書寫成x=的形式(應(yīng)為x1=x2=);

           、芩o方程的未知字母有時(shí)不是x,而是y、z、a、m等,但個(gè)別粗心甚至細(xì)心的同學(xué)在結(jié)果寫方程根時(shí)字母都變成了x,對(duì)于以上錯(cuò)誤,我在最后的知識(shí)小結(jié)中,又重點(diǎn)強(qiáng)調(diào)了配方法的一般步驟,并說明其中關(guān)鍵的一步是第③步,必須依據(jù)等式的基本性質(zhì)給方程兩邊同時(shí)加常數(shù)。

            4、對(duì)于基礎(chǔ)較差的少數(shù)學(xué)生我只要求認(rèn)真理解并鞏固“配方法”;對(duì)于基礎(chǔ)較好的同學(xué)根據(jù)他們的課堂反應(yīng),我還在知識(shí)拓寬方面加以提示:因?yàn)橥耆椒绞降闹刀ㄊ欠秦?fù)數(shù),故若在說明某一多項(xiàng)式是否為非負(fù)數(shù)時(shí),可采用配方法來證,這樣對(duì)有些善于鉆研思考的同學(xué)來說,在有關(guān)配方法的應(yīng)用和探究方面,為之起到“拋磚引玉”的作用,也為后期部分知識(shí)的教學(xué)作了一定的鋪墊。

            5、在我本節(jié)課的教學(xué)當(dāng)中,也有如下不妥之處:①對(duì)不同層次的學(xué)生要求程度不適當(dāng);②在提示和啟發(fā)上有些過度;③為學(xué)生提供的思考問題時(shí)間較少,導(dǎo)致部分學(xué)生對(duì)本節(jié)知識(shí)“囫圇吞棗”,而最終“消化不良”,在以后的課堂教學(xué)中,我會(huì)力爭克服以上不足。

          【一元二次方程教學(xué)反思】相關(guān)文章:

          一元二次方程教學(xué)反思05-17

          《一元二次方程》數(shù)學(xué)教學(xué)反思05-08

          解一元二次方程教學(xué)反思05-15

          一元二次方程的概念教學(xué)反思10-03

          解一元二次方程教學(xué)反思09-07

          一元二次方程的解法教學(xué)反思08-14

          《一元二次方程的應(yīng)用》教學(xué)反思08-09

          解一元二次方程教學(xué)反思15篇10-04

          一元二次方程的解法教學(xué)反思10篇05-06

          實(shí)際問題與一元二次方程教學(xué)反思10-18