91国產乱老熟视頻老熟女,97在线起碰视频,麻豆Av一区二区,亚洲视频国产91www.

<pre id="jdrot"></pre>

<td id="jdrot"><strong id="jdrot"></strong></td>
      <pre id="jdrot"></pre>

          當(dāng)前位置:9136范文網(wǎng)>教育范文>說課稿>高中數(shù)學(xué)說課稿《正弦定理》

          高中數(shù)學(xué)說課稿《正弦定理》

          時(shí)間:2024-10-19 13:13:41 說課稿 我要投稿
          • 相關(guān)推薦

          高中數(shù)學(xué)說課稿《正弦定理》

            作為一名教學(xué)工作者,時(shí)常要開展說課稿準(zhǔn)備工作,說課稿有助于提高教師理論素養(yǎng)和駕馭教材的能力。寫說課稿需要注意哪些格式呢?以下是小編收集整理的高中數(shù)學(xué)說課稿《正弦定理》,歡迎閱讀,希望大家能夠喜歡。

          高中數(shù)學(xué)說課稿《正弦定理》

          高中數(shù)學(xué)說課稿《正弦定理》1

            一、教材地位與作用

            本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)?家恍┙獯痤}。因此,正弦定理的知識非常重要。

            二、學(xué)情分析

            作為高一學(xué)生,同學(xué)們已經(jīng)掌握了基本的三角函數(shù),特別是在一些特殊三角形中,而學(xué)生們在解決任意三角形的邊與角問題,就比較困難。

            教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。

            教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數(shù)。

            根據(jù)我的教學(xué)內(nèi)容與學(xué)情分析以及教學(xué)重難點(diǎn),我制定了如下幾點(diǎn)教學(xué)目標(biāo)。

            教學(xué)目標(biāo)分析:

            知識目標(biāo):理解并掌握正弦定理的證明,運(yùn)用正弦定理解三角形。

            能力目標(biāo):探索正弦定理的證明過程,用歸納法得出結(jié)論。

            情感目標(biāo):通過推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對稱美和數(shù)學(xué)的實(shí)際應(yīng)用價(jià)值。

            三、教法學(xué)法分析

            教法:采用探究式課堂教學(xué)模式,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實(shí)際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。

            學(xué)法:指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,動手嘗試相結(jié)合,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,鍥而不舍的求學(xué)精神。

            四、教學(xué)過程

            (一)創(chuàng)設(shè)情境,布疑激趣

            “興趣是最好的老師”,如果一節(jié)課有個(gè)好的開頭,那就意味著成功了一半,本節(jié)課由一個(gè)實(shí)際問題引入,“工人師傅的`一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個(gè)零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。

            (二)探尋特例,提出猜想

            1、激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。

            2、那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計(jì)算器等工具對一般三角形進(jìn)行驗(yàn)證。

            3、讓學(xué)生總結(jié)實(shí)驗(yàn)結(jié)果,得出猜想:

            在三角形中,角與所對的邊滿足關(guān)系

            這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認(rèn)識從感性逐步上升到理性。

            (三)邏輯推理,證明猜想

            1、強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

            2、鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。

            3、提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

            4、思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明。

            (四)歸納總結(jié),簡單應(yīng)用

            1、讓學(xué)生用文字?jǐn)⑹稣叶ɡ,引?dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。

            2、正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。

            3、運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實(shí)際問題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀。

            (五)講解例題,鞏固定理

            1、例1:在△ABC中,已知A=32°,B=81、8°,a=42、9cm、解三角形。

            例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

            2、例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。

            例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。

            (六)課堂練習(xí),提高鞏固

            1、在△ABC中,已知下列條件,解三角形。

            (1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm

            2、在△ABC中,已知下列條件,解三角形。

            (1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°

            學(xué)生板演,老師巡視,及時(shí)發(fā)現(xiàn)問題,并解答。

            (七)小結(jié)反思,提高認(rèn)識

            通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會?

            1、用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

            2、它表述了三角形的邊與對角的正弦值的關(guān)系。

            3、定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。

            (從實(shí)際問題出發(fā),通過猜想、實(shí)驗(yàn)、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著結(jié)論,而且整個(gè)探索過程我們也掌握了研究問題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。)

            (八)任務(wù)后延,自主探究

            如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。

          高中數(shù)學(xué)說課稿《正弦定理》2

            大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個(gè)方面介紹我這堂課的教學(xué)設(shè)計(jì)。

            一 教材分析

            本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)常考一些解答題。因此,正弦定理和余弦定理的知識非常重要。

            根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標(biāo):

            認(rèn)知目標(biāo):在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運(yùn)用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。

            能力目標(biāo):引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。

            情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評價(jià),調(diào)動學(xué)生的主動性和積極性,給學(xué)生成功的體驗(yàn),激發(fā)學(xué)生學(xué)習(xí)的興趣。

          教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。

            教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數(shù)。

            二 教法

            根據(jù)教材的內(nèi)容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實(shí)際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。突破重點(diǎn)的.手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,積極探索,以及及時(shí)地鼓勵,使他們知難而進(jìn)。另外,抓知識選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識特點(diǎn)入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。突破難點(diǎn)的方法:抓住學(xué)生的能力線聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外通過例題和練習(xí)來突破難點(diǎn)

            三 學(xué)法:

            指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。

            四 教學(xué)過程

            第一:創(chuàng)設(shè)情景,大概用2分鐘

            第二:實(shí)踐探究,形成概念,大約用25分鐘

            第三:應(yīng)用概念,拓展反思,大約用13分鐘

           。ㄒ唬﹦(chuàng)設(shè)情境,布疑激趣

            “興趣是最好的老師”,如果一節(jié)課有個(gè)好的開頭,那就意味著成功了一半,本節(jié)課由一個(gè)實(shí)際問題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個(gè)零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。

           。ǘ┨綄ぬ乩,提出猜想

            1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。

            2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計(jì)算器等工具對一般三角形進(jìn)行驗(yàn)證。

            3.讓學(xué)生總結(jié)實(shí)驗(yàn)結(jié)果,得出猜想:

            在三角形中,角與所對的邊滿足關(guān)系

            這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認(rèn)識從感性逐步上升到理性。

            (三)邏輯推理,證明猜想

            1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

            2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。

            3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

            4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明

            (四)歸納總結(jié),簡單應(yīng)用

            1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ,引?dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。

            2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。

            3.運(yùn)用正弦定理求解本節(jié)課引引入的三角形零件邊長的問題。自己參與實(shí)際問題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀。

            (五)講解例題,鞏固定理

            1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

            例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

            2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

          高中數(shù)學(xué)說課稿《正弦定理》3

            大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個(gè)方面介紹我這堂課的教學(xué)設(shè)計(jì)。

            一、教材分析

            本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。

            根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標(biāo):

            認(rèn)知目標(biāo):通過創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,掌握正弦定理的內(nèi)容及其證明方法,使學(xué)生會運(yùn)用正弦定理解決兩類基本的解三角形問題。

            能力目標(biāo):引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。

            情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評價(jià),調(diào)動學(xué)生的主動性和積極性,激發(fā)學(xué)生學(xué)習(xí)的興趣。

            教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。 教學(xué)難點(diǎn):已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數(shù)。

            二、教法

            根據(jù)教材的內(nèi)容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的.指導(dǎo)思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實(shí)際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。

            三、學(xué)法

            指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。

            四、教學(xué)過程

            (一)創(chuàng)設(shè)情境(3分鐘)

            “興趣是最好的老師”,如果一節(jié)課有個(gè)好的開頭,那就意味著成功了一半,本節(jié)課由一個(gè)實(shí)際問題引入,“工人師傅的一個(gè)三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個(gè)零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。

            (二)猜想—推理—證明(15分鐘)

            激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。 提問:那結(jié)論對任意三角形都適用嗎?(讓學(xué)生分小組討論,并得出猜想)

            在三角形中,角與所對的邊滿足關(guān)系

            注意:1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

            2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。

            3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

            (三)總結(jié)--應(yīng)用(3分鐘)

            1.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。

            2.運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實(shí)際問題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀。

            (四)講解例題(8分鐘)

            1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

            例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

            2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

            例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中

            一邊的對角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。

            (五)課堂練習(xí)(8分鐘)

            1.在△ABC中,已知下列條件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm

            2. 在△ABC中,已知下列條件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°

            學(xué)生板演,老師巡視,及時(shí)發(fā)現(xiàn)問題,并解答。

            (六)小結(jié)反思(3分鐘)

            1.它表述了三角形的邊與對角的正弦值的關(guān)系。

            2.定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。

            3.會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。

            五、教學(xué)反思

            從實(shí)際問題出發(fā),通過猜想、實(shí)驗(yàn)、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著結(jié)論,而且整個(gè)探索過程我們也掌握了研究問題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。

          【高中數(shù)學(xué)說課稿《正弦定理》】相關(guān)文章:

          正弦定理說課稿08-07

          正弦定理教案02-22

          《正弦定理》教案優(yōu)秀11-06

          勾股定理的說課稿04-13

          高中數(shù)學(xué)說課稿07-25

          高中數(shù)學(xué)說課稿05-20

          高中數(shù)學(xué)數(shù)列說課稿05-21

          勾股定理的逆定理數(shù)學(xué)教學(xué)反思08-15

          勾股定理的教案10-13

          勾股定理教案09-06