- 相關(guān)推薦
余弦定理教案集錦
作為一名辛苦耕耘的教育工作者,常常需要準(zhǔn)備教案,借助教案可以有效提升自己的教學(xué)能力。那么什么樣的教案才是好的呢?下面是小編為大家收集的余弦定理教案集錦,歡迎大家分享。
一、教材依據(jù):人民教育出版社(A版)數(shù)學(xué)必修5第一章第二節(jié)
二、設(shè)計(jì)思想:
1、教材分析:余弦定理是初中“勾股定理”內(nèi)容的直接延拓,是解三角形這一章知識(shí)的一個(gè)重要定理,揭示了任意三角形邊角之間的關(guān)系,是解三角形的重要工具,余弦定理與平面幾何知識(shí)、向量、三角形有著密切的聯(lián)系。因此,做好“余弦定理”的教學(xué),不僅能復(fù)習(xí)鞏固舊知識(shí),使學(xué)生掌握新的有用的知識(shí),體會(huì)聯(lián)系、發(fā)展等辯證觀點(diǎn),而且能培養(yǎng)學(xué)生的應(yīng)用意識(shí)和實(shí)踐操作能力,以及提出問(wèn)題、解決問(wèn)題等研究性學(xué)習(xí)的能力。
2、學(xué)情分析:這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了正弦定理及有關(guān)知識(shí)的基礎(chǔ)上,轉(zhuǎn)入對(duì)余弦定理的學(xué)習(xí),此時(shí)學(xué)生已經(jīng)熟悉了探索新知識(shí)的數(shù)學(xué)教學(xué)過(guò)程,具備了一定的分析能力。
3、設(shè)計(jì)理念:由于余弦定理有較強(qiáng)的實(shí)踐性,所以在設(shè)計(jì)本節(jié)課時(shí),創(chuàng)設(shè)了一些數(shù)學(xué)情景,讓學(xué)生從已有的幾何知識(shí)出發(fā),自己去分析、探索和證明。激發(fā)學(xué)生濃厚的學(xué)習(xí)興趣,提高學(xué)生的創(chuàng)新思維能力。
4、教學(xué)指導(dǎo)思想:根據(jù)當(dāng)前學(xué)生的學(xué)習(xí)實(shí)際和本節(jié)課的內(nèi)容特點(diǎn),我采用的是“問(wèn)題教學(xué)法”,精心設(shè)計(jì)教學(xué)內(nèi)容,提出探究性問(wèn)
找到解決問(wèn)題的方法。
三、教學(xué)目標(biāo):
1、知識(shí)與技能:
理解并掌握余弦定理的內(nèi)容,會(huì)用向量法證明余弦定理,能用余弦定理解決一些簡(jiǎn)單的三角度量問(wèn)題
2.過(guò)程與方法:
通過(guò)實(shí)例,體會(huì)余弦定理的內(nèi)容,經(jīng)歷并體驗(yàn)使用余弦定理求解三角形的過(guò)程與方法,發(fā)展用數(shù)學(xué)工具解答現(xiàn)實(shí)生活問(wèn)題的能力。
3.情感、態(tài)度與價(jià)值觀:
探索利用直觀圖形理解抽象概念,體會(huì)“數(shù)形結(jié)合”的思想。通過(guò)余弦定理的應(yīng)用,感受余弦定理在解決現(xiàn)實(shí)生活問(wèn)題中的意義。
四、教學(xué)重點(diǎn):
通過(guò)對(duì)三角形邊角關(guān)系的探索,證明余弦定理及其推論,并能應(yīng)用它們解三角形及求解有關(guān)問(wèn)題。
五、教學(xué)難點(diǎn):余弦定理的靈活應(yīng)用
六、教學(xué)流程:
(一)創(chuàng)設(shè)情境,課題導(dǎo)入:
1、復(fù)習(xí):已知A=300,C=450,b=16解三角形。(可以讓學(xué)生板練)
2、若將條件C=450改成c=8如何解三角形?
設(shè)計(jì)意圖:把研究余弦定理的問(wèn)題和平面幾何中三角形全等判定的方法建立聯(lián)系,溝通新舊知識(shí)的聯(lián)系,引導(dǎo)學(xué)生體會(huì)量化
師生活動(dòng):用數(shù)學(xué)符號(hào)來(lái)表達(dá)“已知三角形的兩邊及其夾角解三角形”:已知△ABC,BC=a,AC=b,和角C,求解c,B,A引出課題:余弦定理
。ǘ┰O(shè)置問(wèn)題,知識(shí)探究
1、探究:我們可以先研究計(jì)算第三邊長(zhǎng)度的問(wèn)題,那么我們又從那些角度研究這個(gè)問(wèn)題能得到一個(gè)關(guān)系式或計(jì)算公式呢?設(shè)計(jì)意圖:期望能引導(dǎo)學(xué)生從各個(gè)不同的方面去研究、探索得到余弦定理。
師生活動(dòng):從某一個(gè)角度探索并得出余弦定理
2、①考慮用向量的數(shù)量積:如圖A
C
設(shè)CBa,CAb,ABc,那么,cab222ccc(ab)(ab)ab2abcosCB即cab222ab2abcosC,引導(dǎo)學(xué)生證明22222
bc2bccosAca2cacosB2②還引導(dǎo)學(xué)生運(yùn)用此法來(lái)進(jìn)行證明
3、余弦定理:三角形中任何一邊的平方等于其他兩邊的平方的(可以讓學(xué)生自己總結(jié),教師補(bǔ)充完整)
。ㄈ┑湫屠}剖析:
1、例1:在△ABC中,已知b=2cm,c=2cm,A=1200,解三角形。
教師分析、點(diǎn)撥并板書(shū)證明過(guò)程
總結(jié):已知三角形的兩邊和它們的夾角解三角形,基本思路是先由余弦定理求出第三邊,再由正弦定理求其余各角。變式引申:在△ABC中,已知b=5,c=
53,A=300,解三角形。
2、探究:余弦定理是關(guān)于三角形三邊和一個(gè)角的一個(gè)關(guān)系式,把這個(gè)關(guān)系式作某些變形,是否可以解決其他類型的解三角形問(wèn)題?
設(shè)計(jì)意圖:(1)引入余弦定理的推論(2)對(duì)一個(gè)數(shù)學(xué)式子作某種變形,從而得到解決其他類型的數(shù)學(xué)問(wèn)題,這是一種基本的研究問(wèn)題的方法。
師生活動(dòng):對(duì)余弦定理作某些變形,研究變形后所得關(guān)系式的應(yīng)用。因此應(yīng)把重點(diǎn)引導(dǎo)到余弦定理的推論上去,即討論已知三邊求角的問(wèn)題。
引入余弦定理的推論:cosA=cosB=acb2ac222bca2bc2222 , , cosC=
abc2ab22
公式作用:(1)、已知三角形三邊,求三角。
。2)、若A為直角,則cosA=0,從而b2+c2=a2
若A為銳角,則cosA>0,從而b2+c2>a2
若A為鈍角,則cosA﹤0,從而b2+c2﹤a2
62,求A、B、C例2:已知在ABC中,a23,b22,c
先讓學(xué)生自己分析、思索,老師進(jìn)行引導(dǎo)、啟發(fā)和補(bǔ)充,最后師生一起求解。
總結(jié):對(duì)于已知三角形的三邊求三角這種類型,解三角形的基本思路是先由余弦定理求出兩角,再用三角形內(nèi)角和定理求出第三角。(可以先讓學(xué)生歸納總結(jié),老師補(bǔ)充)變式引申:在△ABC中,a:b:c=2:讓學(xué)生板練,師生共同評(píng)判
3、三角形形狀的判定:
例3:在△ABC中,acosA=bcosB,試確定此三角形的形狀。
(教師引導(dǎo)學(xué)生分析、思考,運(yùn)用多種方法求解)
求解思路:判斷三角形的形狀可有兩種思路,一是利用邊之間的關(guān)系來(lái)判定,在運(yùn)算過(guò)程中,盡可能地把角的關(guān)系化為邊的關(guān)系;二是利用角之間的關(guān)系來(lái)判定,將邊化成角。
變式引申:在△ABC中,若(a+b+c)(b+c-a)=3bc,并且sinA=2sinBcosC,判斷△ABC的形狀。
讓學(xué)生板練,發(fā)現(xiàn)問(wèn)題進(jìn)行糾正。
。ㄋ模┱n堂檢測(cè)反饋:
1、已知在△ABC中,b=8,c=3,A=600,則a=()A 2 B 4 C 7 D 9
6:(3+1),求A、B、C。、在△ABC中,若a=
3+1,b=
3-1,c=
10,則△ABC的最大角的度數(shù)為()A 1200 B 900 C 600 D 1500
3、在△ABC中,a:b:c=1:
3:2,則A:B:C=()
A 1:2:3 B 2:3:1 C 1:3:2 D 3:1:2
4、在不等邊△ABC中,a是最大的邊,若a25、在△ABC中,AB=5,BC=6,AC=8,則△ABC的形狀是()A銳角三角形B直角三角形C鈍角三角形D非鈍角三角形(五)課時(shí)小結(jié):(學(xué)生自己歸納、補(bǔ)充,培養(yǎng)學(xué)生的口頭表達(dá)能力和歸納概括能力,教師總結(jié))運(yùn)用多種方法推導(dǎo)出余弦定理,并靈活運(yùn)用余弦定理解決解三角形的兩種類型及判斷三角形的形狀問(wèn)題。(六)課后作業(yè):課本第10頁(yè)A組3(2)、4(2);B組第2題(七)教學(xué)反思:本堂課的設(shè)計(jì),立足于所創(chuàng)設(shè)的情境,注重提出問(wèn)題,引導(dǎo)學(xué)生自主探索、合作交流,親身經(jīng)歷了提出問(wèn)題、解決問(wèn)題的過(guò)程,學(xué)生成為余弦定理的“發(fā)現(xiàn)者”和“創(chuàng)造者”,切身感受到了創(chuàng)造的苦和樂(lè),知識(shí)目標(biāo)、能力目標(biāo)、情感目標(biāo)均得到了較好的落實(shí)。