《三角形的內(nèi)角和》教案
作為一位無私奉獻(xiàn)的人民教師,往往需要進(jìn)行教案編寫工作,教案是教學(xué)活動(dòng)的總的組織綱領(lǐng)和行動(dòng)方案。那么優(yōu)秀的教案是什么樣的呢?以下是小編幫大家整理的《三角形的內(nèi)角和》教案,希望能夠幫助到大家。
《三角形的內(nèi)角和》教案1
【設(shè)計(jì)理念】
遵循由特殊到一般的規(guī)律進(jìn)行探究活動(dòng)是這節(jié)課設(shè)計(jì)的主要特點(diǎn)之一!稊(shù)學(xué)課程標(biāo)準(zhǔn)》指出,讓學(xué)生學(xué)習(xí)有價(jià)值的數(shù)學(xué),讓學(xué)生帶著問題、帶著自己的思想、自己的思維進(jìn)入數(shù)學(xué)課堂,對(duì)于學(xué)生的數(shù)學(xué)學(xué)習(xí)有著重要作用。因此,我嘗試著將數(shù)學(xué)文本、課外預(yù)習(xí)、課堂教學(xué)三方有機(jī)整合,在質(zhì)疑、解疑、釋疑中展開教學(xué),培養(yǎng)學(xué)生提出問題、分析問題和解決問題的探究能力。
【教材分析】
三角形的內(nèi)角和是三角形的一個(gè)重要特征。本課是安排在學(xué)習(xí)三角形的概念及分類之后進(jìn)行的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實(shí)際問題的基礎(chǔ)。學(xué)生在掌握知識(shí)方面:已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識(shí);能力方面:經(jīng)過三年多的學(xué)習(xí),已具備了初步的動(dòng)手操作能力和主動(dòng)探究能力以及合作學(xué)習(xí)的習(xí)慣。因此,教材很重視知識(shí)的探索與發(fā)現(xiàn),安排了一系列的實(shí)驗(yàn)操作活動(dòng)。教材呈現(xiàn)教學(xué)內(nèi)容時(shí),不但重視體現(xiàn)知識(shí)的形成過程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、算、拼等活動(dòng),讓學(xué)生探索、實(shí)驗(yàn)、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。
【學(xué)情分析】
學(xué)生已經(jīng)掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識(shí),大多數(shù)學(xué)生已經(jīng)在課前通過不同的途徑知道“三角形的內(nèi)角和是180度”的結(jié)論,但不一定清楚道理,所以本課的設(shè)計(jì)意圖不在于了解,而在于驗(yàn)證,讓學(xué)生在課堂上經(jīng)歷研究問題的過程是本節(jié)課的重點(diǎn)。四年級(jí)的學(xué)生已經(jīng)初步具備了動(dòng)手操作的意識(shí)和能力,并形成了一定的空間觀念,能夠在探究問題的過程中,運(yùn)用已有知識(shí)和經(jīng)驗(yàn),通過交流、比較、評(píng)價(jià)尋找解決問題的途徑和策略。
【學(xué)習(xí)目標(biāo)】
1.通過測(cè)量、剪、拼等活動(dòng)發(fā)現(xiàn)、探索和發(fā)現(xiàn)“三角形內(nèi)角和是180°”。
2.學(xué)會(huì)根據(jù)“三角形內(nèi)角和是180°”這一知識(shí)求三角形中一個(gè)未知數(shù)的度數(shù)。
3.在課堂活動(dòng)中培養(yǎng)學(xué)生的觀察、歸納、概括能力和初步的空間想象力。并通過動(dòng)手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動(dòng),向?qū)W生滲透“轉(zhuǎn)化”數(shù)學(xué)思想。
4.使學(xué)生體驗(yàn)成功的喜悅,激發(fā)學(xué)生主動(dòng)學(xué)習(xí)數(shù)學(xué)的興趣。
【教學(xué)重點(diǎn)】
探索和發(fā)現(xiàn)“三角形的內(nèi)角和是180°”。
【教學(xué)難點(diǎn)】
運(yùn)用三角形的內(nèi)角和解決實(shí)際問題。
【教學(xué)準(zhǔn)備】
教師:多媒體、剪好的不同類型的三角形。
學(xué)生:量角器、剪刀、剪好的不同類型的三角形。
【教學(xué)過程】
一、創(chuàng)設(shè)情景,引出問題
1.猜謎語。
師:同學(xué)們,你們喜歡猜謎語嗎?今天老師給你們帶來了一則謎語。請(qǐng)同學(xué)們讀一下(出示謎語)。
師:打一幾何圖形。猜猜看!
學(xué)生猜謎語。
根據(jù)學(xué)生的回答,出示謎底。
師:真是三角形,同學(xué)們的反應(yīng)真快!
2.復(fù)習(xí)三角形的內(nèi)容。
其實(shí),三角形我們并不陌生,它是一種特別的平面圖形。關(guān)于三角形,你們已經(jīng)掌握了哪些知識(shí)?
指名學(xué)生回答。
。ó(dāng)學(xué)生回答出三角形有3個(gè)頂點(diǎn)、3條邊和3個(gè)角時(shí),請(qǐng)這名學(xué)生到臺(tái)上分別指出三角形的`3個(gè)角,并標(biāo)出角。)
3.引出課題。
師:同學(xué)們知道的還真不少,可見你們平時(shí)學(xué)習(xí)很用功。知道嗎?其實(shí)三角形的這三個(gè)角就是三角形的三個(gè)內(nèi)角,而這三個(gè)角的度數(shù)和就是三角形的內(nèi)角和。你們知道三角形的內(nèi)角和是多少度嗎?今天這節(jié)課就讓我們一起走進(jìn)三角形內(nèi)角和,探索其中的奧秘。
。ò鍟n題:三角形的內(nèi)角和)
二、探究新知
1.討論、交流驗(yàn)證知識(shí)的方法。
師:那同學(xué)們用什么方法來研究三角形的內(nèi)角和呢?趕緊商量一下。(同桌交流)
學(xué)生匯報(bào):①用量的方法;②用拼的方法;③用折的方法...
2.操作驗(yàn)證。
師:同學(xué)們的點(diǎn)子還真多!現(xiàn)在請(qǐng)同學(xué)們拿出準(zhǔn)備好的三角形,
選1個(gè)自己喜歡的三角形,選擇自己喜歡的方法進(jìn)行驗(yàn)證。(或說研究)等研究完了我們?cè)俳涣鳎l(fā)現(xiàn)了什么,好嗎?好,現(xiàn)在開始!
3.學(xué)生匯報(bào)。
師:如果你們已經(jīng)完成了,就把你的小手舉起來示意老師。老師有點(diǎn)迫不及待了,想趕緊分享一下你們研究的成果。誰先來說?
學(xué)生匯報(bào),教師適時(shí)板書。
、儆昧康姆椒ǎ
指名學(xué)生匯報(bào)度量的結(jié)果,教師板書。(指兩名學(xué)生匯報(bào))
教師白板演示測(cè)量方法,并計(jì)算和板書出結(jié)果。
教師:同樣是測(cè)量的方法,有的同學(xué)得了180,有的不是180°,為什么會(huì)出現(xiàn)這種情況?(指名學(xué)生說)
師:可能我們測(cè)量的時(shí)候會(huì)有誤差,但是同學(xué)們選擇比較精確的測(cè)量工具,使用正確的測(cè)量方法,還是可以得到精確的結(jié)果?磥磉@個(gè)辦法不能使人很信服,有沒有別的方法驗(yàn)證?
②用拼的方法
a.學(xué)生匯報(bào)拼的方法并上臺(tái)演示。
我這里也有一個(gè)鈍角三角形,請(qǐng)兩名同學(xué)上臺(tái)演示。
b.請(qǐng)大家四人小組合作,用他的方法驗(yàn)證其它三角形。
c.展示學(xué)生作品。
d.師展示。
師:我們用量、拼得到了180度,還有什么方法?
、塾谜鄣姆椒
師:還想向同學(xué)們請(qǐng)同學(xué)們看一看他是怎么折的(演示)。
師:剛才我們用量的方法、拼的方法和折的方法研究了銳角三角形、直角三角形和鈍角三角形內(nèi)角和,得出什么結(jié)論了?
教師根據(jù)學(xué)生板書:(任意)三角形的內(nèi)角和是180度。
、軘(shù)學(xué)文化
師:除了我們這節(jié)課大家想到的方法,還有很多方法也能驗(yàn)證三角形的內(nèi)角和是180°,到初中我們還要更嚴(yán)密的方法證明三角形的內(nèi)角和是180°。其實(shí),早在300多年前就有一位偉大的數(shù)學(xué)家,用科學(xué)的數(shù)學(xué)方法見證了任意三角形的內(nèi)角和都是180度。這位偉大的數(shù)學(xué)家就是帕斯卡(出示帕斯卡),他是法國(guó)著名的數(shù)學(xué)家、物理學(xué)家。他在12歲時(shí)發(fā)現(xiàn)了三角形內(nèi)角和定律,17時(shí)寫出了《圓錐截線論》19歲設(shè)計(jì)了第一架計(jì)算機(jī)。
三、鞏固練習(xí)
數(shù)學(xué)家發(fā)現(xiàn)了知識(shí),今天我們也能夠總結(jié)出知識(shí)。你們棒不棒?真厲害,接下來白老師要考考你們。眼睛看好啦!
1.出示:我是小判官(對(duì)的打“√”錯(cuò)的“×”。)
強(qiáng)調(diào):把兩個(gè)小三角形拼在一起,問:大三角形的內(nèi)角和是多少度?
教師:為什么不是360°?學(xué)生回答。
2.接下來我要獎(jiǎng)勵(lì)你們一個(gè)游戲:《幫角找朋友》
3.求未知角的度數(shù)。
師:接下來,利用三角形的內(nèi)角和我們來解決一些相關(guān)的問題吧!
①出示第一個(gè)三角形,學(xué)生嘗試獨(dú)立完成,教師巡視。
教師:剛才,我們利用了三角形的什么?
、诮處煟喝绻粋(gè)都不知道,或只知道1個(gè)角,你能知道三角形各角的度數(shù)嗎?求出下面三角形各角的度數(shù)。
a.我三邊相等;b.我是等腰三角形,我的頂角是96°。c.我有一個(gè)銳角是40°。
教師:如果我們?nèi)デ笠粋(gè)三角形內(nèi)角的度數(shù)的時(shí)候,首先我們要去觀察三角形,找出它的特點(diǎn),找出它給出的已知角的度數(shù),然后再去計(jì)算三角形未知的內(nèi)角的度數(shù)。
四、拓展延伸
師:看來三角形內(nèi)角和的知識(shí)難不倒你們了,我們來一個(gè)挑戰(zhàn)題。你們敢接受挑戰(zhàn)嗎?(出示四邊形)你知道它的內(nèi)角和是多少嗎?指名生回答,并說出理由。同學(xué)們,你們能用今天學(xué)的知識(shí)算出它的內(nèi)角和嗎?
接著讓學(xué)生嘗試求5邊形和6邊形的內(nèi)角和。
小結(jié):求多邊形的內(nèi)角和,可以從一個(gè)頂點(diǎn)出發(fā),引出它的對(duì)角線,這樣就把這個(gè)多邊形分割成了N個(gè)三角形,它的內(nèi)角和就是N個(gè)180°
五、課堂總結(jié)。
師:這節(jié)課你有什么收獲?
學(xué)生自由發(fā)言。
師生交流后總結(jié):知道了三角形的內(nèi)角和是180度,根據(jù)這個(gè)規(guī)律知道可以用180°減去兩個(gè)內(nèi)角的度數(shù),求出第三個(gè)未知角的度數(shù)。
同學(xué)們,只要我們?cè)谌粘5膶W(xué)習(xí)中,細(xì)心觀察,大膽質(zhì)疑,認(rèn)真研究,一定會(huì)有意想不到的收獲。
六、作業(yè)布置
完成教材練習(xí)十六的第1、3題。
七、板書設(shè)計(jì):
( 任意)三角形的內(nèi)角和是180°
∠1+∠2+∠3=180°
度量 剪拼 折拼
《三角形的內(nèi)角和》教案2
教學(xué)目標(biāo):
1、讓學(xué)生親自動(dòng)手,通過量、剪、拼等活動(dòng),發(fā)現(xiàn)并證實(shí)三角形的內(nèi)角和是180°,應(yīng)用三角形內(nèi)角和的知識(shí)解決實(shí)際問題。
2、讓學(xué)生在動(dòng)手獲取知識(shí)的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),探索精神和實(shí)踐能力。
重點(diǎn)、難點(diǎn):
經(jīng)歷“三角形內(nèi)角和是180°”這一知識(shí)的形成,發(fā)展和應(yīng)用的全過程。
三角形內(nèi)角和是180°的探索和驗(yàn)證。
教學(xué)過程:
一、揭示課題
1、今天我們一起來學(xué)習(xí)三角形的內(nèi)角和,那什么是三角形的內(nèi)角和?(三角形里面的角),它有幾個(gè)內(nèi)角?(三個(gè))出示紙片,那什么又是三角形的內(nèi)角和呢?(把三角形的三個(gè)角的度數(shù)加起來就是三角形的內(nèi)角和)
出示課件
2、提出問題,為后面做鋪墊。
現(xiàn)在有3個(gè)三角形(出示課件),直角三角形說:“我是直角三角形,我的內(nèi)角和最大”鈍角三角形說:“我有一個(gè)鈍角,比你們?nèi)齻(gè)角都大,所以我的內(nèi)角和才是最大的。銳角三角形說:“我雖然是銳角三角形,但我的個(gè)頭最大,所以我的內(nèi)角和才是最大的。
孩子們,它們這樣吵起來可不是辦法呀!你們可知道它們誰的內(nèi)角和最大呢?那我們就一起來證明給他們看。
二、新授
1、任意畫不同的類型的三角形,算一算三個(gè)內(nèi)角和是多少度。我們就畫三個(gè)不同類型的三角形,算一算三個(gè)內(nèi)角和是多少度,我們有三大組,為了節(jié)約時(shí)間,每一大組畫一種又分幾小組,三人一小組,一人畫,一人量,一人記錄。(小組合作,畫圖,量角,記錄,計(jì)算)
指名匯報(bào)結(jié)果并板書(至少一種一個(gè)板書),有不同意見的舉手,相差1、2度很正常,量角會(huì)有誤差(你們完成的又快又好,因此可見小組合作很到位)
師出示一個(gè)大直角三角板,請(qǐng)大家算一算這個(gè)三角板的內(nèi)角和是多少?
。ㄈ切蔚膬(nèi)角和都是一樣大的.,都是180°,僅僅一個(gè)實(shí)驗(yàn)還不能讓它們心服口服,下面我們?cè)賮碜鰞蓚(gè)實(shí)驗(yàn),讓它們心服口服)
1、拼一拼,折一折
孩子們,我們又活動(dòng)起來吧,拼一拼折一折,讓它們看一看,拿出你們準(zhǔn)備好的三角形。我們一起來:拿出一個(gè)三角形(不管形狀),撕下三個(gè)角,然后拼在一起(注意三個(gè)角的頂點(diǎn)要在同一個(gè)點(diǎn)上)你們發(fā)現(xiàn)了什么?(拼成了一個(gè)平角,這一點(diǎn)就是平角的頂點(diǎn))
我們?cè)倌贸鲆粋(gè)三角形,折一折(注意科學(xué)的嚴(yán)謹(jǐn)性,折的時(shí)候不留很寬的縫隙)你又發(fā)現(xiàn)了什么?(這個(gè)三角形還是組成了一個(gè)平角)
通過這三次實(shí)驗(yàn),我們可以得出結(jié)論:三角形的內(nèi)角和等于180°,不分形狀,不分大小,任何一個(gè)三角形的內(nèi)角和都是180°
此時(shí),這三個(gè)三角形還爭(zhēng)吵嗎?它們都心服口服了。
孩子們,你們真了不起,輕而易舉就平息了一場(chǎng)爭(zhēng)吵,F(xiàn)在你能不能利用所學(xué)知識(shí)解決一些問題呢?
三、練習(xí)
1、搶答游戲(答對(duì)的給你的那一小組加一分)
、
這個(gè)三角形的內(nèi)角和是多少度。
②
把這個(gè)三角形平均分成兩個(gè)小三角形,每個(gè)小三角形是多少度。
、
這個(gè)小三角形再分成一大一小兩個(gè)三角形,這個(gè)三角形的內(nèi)角和分別是多少度?
、
三個(gè)小三角形拼成一個(gè)更大的三角形,它的內(nèi)角和是多少度?
2、智慧角
3、判斷(用手語表示)(哪個(gè)小組同學(xué)全部舉手,就由哪個(gè)小組回答,口說手劃答對(duì)加一分)
4、知識(shí)擴(kuò)展
其實(shí)三角形的內(nèi)角和是一個(gè)小朋友發(fā)現(xiàn)并提出來的,當(dāng)時(shí)他只有12歲,比你們大一點(diǎn)點(diǎn),真了不起,你們想知道他是誰嗎?(帕斯卡)
出示課件
孩子們,其實(shí)你們跟他們同樣聰明,以后,我們就利用所學(xué)知識(shí)去發(fā)現(xiàn)探索新的知識(shí)和規(guī)律,只要努力,就一定會(huì)成功的,孩子們加油吧!
四、總結(jié)
任何一個(gè)三角形不分大小,不分形狀,它們的內(nèi)角和都是180°
《三角形的內(nèi)角和》教案3
設(shè)計(jì)理念:
本教學(xué)活動(dòng)通過創(chuàng)設(shè)情境,讓學(xué)生從情境中出發(fā)經(jīng)歷猜測(cè)、驗(yàn)證、交流等數(shù)學(xué)活動(dòng),培養(yǎng)學(xué)生動(dòng)手實(shí)踐、自主探究與合作交流的能力。同時(shí),讓學(xué)生充分感受到:數(shù)學(xué)源于生活,生活離不開數(shù)學(xué),數(shù)學(xué)就在我們身邊。遵循由特殊到一般的規(guī)律進(jìn)行探究活動(dòng)是這節(jié)課設(shè)計(jì)的主要特點(diǎn)之一,并在這一系列教學(xué)活動(dòng)中潛移默化地向?qū)W生滲透了“轉(zhuǎn)化”數(shù)學(xué)思想,為后續(xù)學(xué)習(xí)奠定必要的基礎(chǔ)。
教學(xué)內(nèi)容:
《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)》(人教版)四年級(jí)下冊(cè)第85頁例5及相應(yīng)練習(xí)。
學(xué)情與教材分析:
該內(nèi)容是本冊(cè)教材第五單元關(guān)于三角形內(nèi)角和的教學(xué)。它安排在三角形的分類之后,組織學(xué)生對(duì)不同形狀和不同大小三角形度量?jī)?nèi)角的度數(shù)。通過度量,各種三角形內(nèi)角和之和都接近180°,引發(fā)學(xué)生對(duì)三角形內(nèi)角和探究的欲望,應(yīng)用折疊、拼湊等方法驗(yàn)證。教材重視知識(shí)的探索與發(fā)現(xiàn),安排了一系列的實(shí)驗(yàn)操作活動(dòng)。教材呈現(xiàn)教學(xué)內(nèi)容時(shí),不但重視體現(xiàn)知識(shí)的形成過程,而且注意留給學(xué)生進(jìn)行自主探索和交流的空間,讓學(xué)生探索、實(shí)驗(yàn)、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。
教學(xué)目標(biāo):
1、通過量、剪、拼等方法,探索和發(fā)現(xiàn)三角形內(nèi)角和是180°。
2、在操作活動(dòng)中,培養(yǎng)學(xué)生的合作能力、動(dòng)手操作能力,發(fā)展學(xué)生的空間觀念,并應(yīng)用新知識(shí)解決問題。
3、使學(xué)生有科學(xué)實(shí)驗(yàn)態(tài)度,激發(fā)學(xué)生主動(dòng)學(xué)習(xí)數(shù)學(xué)的興趣,體驗(yàn)數(shù)學(xué)學(xué)習(xí)成功的喜悅。
教學(xué)重點(diǎn):
引導(dǎo)學(xué)生發(fā)現(xiàn)三角形內(nèi)角和是180°。
教學(xué)難點(diǎn):
用不同方法驗(yàn)證三角形的內(nèi)角和是180°。
教學(xué)用具:
三種不同類型三角形,多媒體課件。
教學(xué)過程:
一、創(chuàng)設(shè)情境,揭示課題。
與學(xué)生交流。(同學(xué)們,星期天你們喜歡玩什么? )
小明打破一塊三角形玻璃的情景。(課件出示)
。▽W(xué)生猜一猜,他會(huì)帶哪一塊到玻璃店配玻璃)
、劢榻B三角形內(nèi)角及三角形內(nèi)角和的含義。
、茉O(shè)疑揭題。
從剛才的情境中,我們知道,破掉的三角形玻璃,只要知道其中的兩內(nèi)角,就能配出和原來一樣的玻璃。究竟有什么奧妙?這節(jié)課我們就一起來研究有關(guān)三角形內(nèi)角和的`知識(shí)。
【設(shè)計(jì)意圖:以小明打破玻璃為載體,引入本課的學(xué)習(xí),增強(qiáng)了學(xué)生的好奇心與探究欲,使學(xué)生全身心地投入到學(xué)習(xí)活動(dòng)中來。拉近了數(shù)學(xué)課堂與現(xiàn)實(shí)生活的距離,激起學(xué)生濃厚的學(xué)習(xí)興趣!
二、自主探索、驗(yàn)證猜想。
1、猜一猜。
猜一猜,它們的內(nèi)角和到底是誰的大呢?(板貼三種不同類型三角形)
2、量一量。
用量角器來量一量,算一算。
合作要求:
三種三角形和一張表格,四人小組合作,你們覺得怎樣分工度量的速度會(huì)最快?
溫馨提示:
測(cè)量的同學(xué):量出每個(gè)角的度數(shù),把它寫在三角形里面。三個(gè)角的度數(shù)都量好后,再匯報(bào)給記錄的同學(xué)登記。
記錄的同學(xué):監(jiān)督小組其他同學(xué)量得是不是很準(zhǔn)確、真實(shí)。不能改掉小組成員度量出來的數(shù)據(jù)。(開始)
量一量、算一算不同類型三角形內(nèi)角和各是多少度?
、菩〗M合作探究
⑶匯報(bào)交流
【學(xué)生匯報(bào)中可能會(huì)出現(xiàn)答案不是唯一的情況,如:180°、179°、181°等!
。4)說一說。
師:觀察這些測(cè)量結(jié)果你能發(fā)現(xiàn)什么(三角形內(nèi)角和大約是180°左右)?
3、驗(yàn)證。
。1)剪拼、撕拼
用度量的方法驗(yàn)證,得到的結(jié)果不統(tǒng)一。有沒有比度量更精確的驗(yàn)證方法?也就是不用度量你能用別的方法驗(yàn)證嗎?
【學(xué)情預(yù)設(shè):生:把三角形的三個(gè)角剪下來,再拼成一個(gè)角。】
。2)折拼
用剪拼的方法是比較精確,美中不足就是把三角形給剪了或是撕了。有沒有更好驗(yàn)證方法?(用折的方法—課件演示)
。3)觀察小結(jié)。
現(xiàn)在大家知道這幾個(gè)三角形的內(nèi)角和是多少度嗎?
任何三角形的內(nèi)角和都是180°。
4、揭疑解惑。
小明為什么帶只剩兩個(gè)角的三角形玻璃到玻璃店配玻璃?
【設(shè)計(jì)意圖:探索是數(shù)學(xué)的生命線。本環(huán)節(jié)以學(xué)生探索活動(dòng)為主,讓學(xué)生在“量一量”、“折一折、拼一拼”中充分的探索活動(dòng)中發(fā)現(xiàn)問題、提出問題、舉例驗(yàn)證、建立模型,讓學(xué)生在“做數(shù)學(xué)”過程中理解和掌握新知識(shí),為學(xué)生建立良好的學(xué)習(xí)空間!
四、鞏固深化。
師:學(xué)會(huì)了知識(shí),我們就要懂得去運(yùn)用。下面,我們就根據(jù)三角形的內(nèi)角和的知識(shí)來解決一些相關(guān)數(shù)學(xué)問題。
1、選一選。哪三個(gè)角能組成一個(gè)三角形的三個(gè)內(nèi)角?(課件出示)
2、算一算。求出三角形三個(gè)角的度數(shù)。(課件出示)
猜一猜。三角形中有一個(gè)角是60°,猜一猜它是什么三角形。
【設(shè)計(jì)意圖:練習(xí)設(shè)計(jì)力求形式多樣,循序漸進(jìn),既鞏固新知,又促進(jìn)學(xué)生發(fā)散思維能力!
五、回顧實(shí)踐、全課總結(jié)
同學(xué)們通過這堂課的活動(dòng)學(xué)習(xí),說說你感受最深的是什么?讓老師和同學(xué)們分享你的收獲!
六、課后思考、拓展延伸。
一個(gè)三角形,剪掉一個(gè)角,剩下圖形的內(nèi)角和是多少?
。▓D略,等腰三角形,剪掉一個(gè)底角)
《三角形的內(nèi)角和》教案4
教學(xué)目標(biāo)
1.使學(xué)生經(jīng)歷自主探索三角形的內(nèi)角和的過程,知道三角形的內(nèi)角和是180°,能運(yùn)用這一規(guī)律解決一些簡(jiǎn)單的問題。
2.使學(xué)生在觀察、操作、分析、猜想、驗(yàn)證、合作、交流等具體活動(dòng)中,提高動(dòng)手操作能力和數(shù)學(xué)思考能力。
3.使學(xué)生在參與數(shù)學(xué)學(xué)習(xí)活動(dòng)的過程中,獲得成功的體驗(yàn),感受探索數(shù)學(xué)規(guī)律的樂趣,產(chǎn)生喜歡數(shù)學(xué)的積極情感,培養(yǎng)積極與他人合作的意識(shí)。
課前準(zhǔn)備
多媒體課件,任意三角形,剪刀,紙,三角板,量角器等。
教學(xué)過程
一、創(chuàng)設(shè)情境,導(dǎo)入新課
師:我們已經(jīng)學(xué)習(xí)了三角形的分類,你知道三角形按角分可以分為哪幾類嗎?
生:三角形按角分可以分為鈍角三角形、直角三角形、銳角三角形。
師:(出示一副三角尺)這是一副三角尺,它們都是什么形狀?每塊三角尺的三個(gè)角分別是多少度?
生:它們都是直角三角形,(拿起等腰的三角尺)這塊三角尺三個(gè)角的度數(shù)分別是45°、45°和90°;另一塊三角尺的三個(gè)角分別是30°、60°、90°。
教師指三角尺的角:這三個(gè)角都叫做三角形的內(nèi)角。(板書:內(nèi)角)一個(gè)三角形有幾個(gè)內(nèi)角?
生:一個(gè)三角形有三個(gè)內(nèi)角。
師:這兩個(gè)三角形三個(gè)內(nèi)角的和分別是多少度?
生:都是180°。
師:一個(gè)三角形中三個(gè)內(nèi)角的和稱為三角形的內(nèi)角和。今天我們就來研究三角形的內(nèi)角和。(板書課題)
二、提出問題,猜想驗(yàn)證
1.猜想。
師:請(qǐng)同學(xué)拿出兩塊同樣的三角尺,把這兩塊同樣的三角尺拼成一個(gè)大的三角形,看一看拼成的三角形的內(nèi)角和是多少度?
學(xué)生活動(dòng)后,反饋:你拼成的三角形是什么樣子的?它的內(nèi)角和是多少度?
生1:我拼成的三角形每個(gè)內(nèi)角都是60°,它的內(nèi)角和是180°。
生2:我拼成的三角形,三個(gè)內(nèi)角分別是30°、30°、120°,它的內(nèi)角和也是180°。
生3:我拼成的三角形,三個(gè)內(nèi)角分別是45°、45°、90°,它的內(nèi)角和也是180°。
師:從這一現(xiàn)象中,你能猜想一下,三角形的內(nèi)角和可能存在的規(guī)律嗎?
生1:我猜想三角形的內(nèi)角和是180°。
生2:我猜想鈍角三角形的內(nèi)角和比180°大。
生3:不對(duì)。我拼的這個(gè)三角形(用兩塊三角尺拼成一個(gè)三個(gè)內(nèi)角是30°、30°、120°的三角形)就是一個(gè)鈍角三角形,但它的內(nèi)角和也是180°。
師:還有不同的猜想嗎?
師:研究數(shù)學(xué)問題就要像這樣,既能大膽地猜想,又敢于對(duì)結(jié)論提出質(zhì)疑。有人對(duì)“三角形的內(nèi)角和等于180°”這一猜想提出質(zhì)疑嗎?你能說清楚三角形的內(nèi)角和等于180°的理由嗎?(沒有人舉手)是的,由猜想得出的結(jié)論往往是不可靠的,需要我們進(jìn)一步去驗(yàn)證。
2.驗(yàn)證。
師:怎樣驗(yàn)證“三角形的內(nèi)角和等于180°”呢?請(qǐng)同學(xué)們先在小組里討論討論,可以怎樣進(jìn)行驗(yàn)證?再選擇合適的材料,以小組為單位進(jìn)行驗(yàn)證。比一比,哪個(gè)組驗(yàn)證的方法多,有創(chuàng)意。
學(xué)生分小組活動(dòng),教師參與學(xué)生的活動(dòng),并給予必要的指導(dǎo)。
師:哪個(gè)小組先來匯報(bào),你們是怎樣驗(yàn)證的?
小組1:我們小組每個(gè)人畫了一個(gè)三角形,用量角器量,量出各個(gè)三角形的內(nèi)角度數(shù),再加一加,并列出了一張表格,(在實(shí)物投影儀上展示下面的表格)請(qǐng)大家來看一看。通過計(jì)算,我們認(rèn)為三角形內(nèi)角和是180°這一結(jié)論是正確的。
小組2:我們小組把三角形的三個(gè)內(nèi)角拼在一起,(邊說邊演示)我們發(fā)現(xiàn)三角形的三個(gè)內(nèi)角正好拼成了一個(gè)平角,所以我們也認(rèn)為三角形內(nèi)角和是180°這一結(jié)論是對(duì)的。
小組3:我們小組采用了折一折的方法。我們將正方形紙沿對(duì)角線對(duì)折,這樣,就折成了兩個(gè)大小一樣的三角形。因?yàn)檎叫蔚乃膫(gè)直角的'和是360°,所以三角形的內(nèi)角和就是它的一半,是180°。
小組4:我們小組采用的是拼一拼的方法。我們將兩個(gè)完全一樣的三角形拼成了一個(gè)長(zhǎng)方形,長(zhǎng)方形的內(nèi)角和360°,所以三角形的內(nèi)角和就是它的一半,是180°。
3.歸納。
師:通過剛才的活動(dòng),我們得出了什么結(jié)論?
生:三角形的內(nèi)角和等于180°。
師:剛才,我們是怎樣得出“三角形內(nèi)角和等于180°”這個(gè)結(jié)論的?
生:我們是用先猜想再驗(yàn)證的方法得出結(jié)論的。
師:是的,“猜想—驗(yàn)證”是一種很有效的科學(xué)研究方法。有很多重大的科學(xué)發(fā)現(xiàn),就是通過這一方法得到的。
4.教學(xué)“試一試”。
師:知道了三角形的內(nèi)角和等于180°,就可以運(yùn)用它去解決一些問題。我們來“試一試”。(出示“試一試”的題目)你能根據(jù)∠1和∠2的度數(shù),算出∠3的度數(shù)嗎?自己先算一算,再用量角器量一量,看與算出的結(jié)果是否相同。
學(xué)生匯報(bào)結(jié)果。
三、靈活運(yùn)用,鞏固練習(xí)
1.出示“想想做做”第1題。
師:你能算出下面每個(gè)三角形中未知角的度數(shù)嗎?獨(dú)立完成。
學(xué)生活動(dòng)后,集體反饋。
2.出示下圖。
師:用今天學(xué)習(xí)的結(jié)論還能解決生活中的一些問題呢。這里的三張紙片都被撕去了一個(gè)角,你能猜一猜,它們?cè)瓉硎鞘裁慈切螁幔?/p>
生1:第一個(gè)三角形是銳角三角形,因?yàn)橐阎膬蓚(gè)角的和大于90°了。
生2:第二個(gè)三角形是直角三角形,因?yàn)閮蓚(gè)已知的角的和等于90°。
生3:第三個(gè)三角形是鈍角三角形,因?yàn)橐阎膬蓚(gè)角的和只有40°,被撕去的那個(gè)角一定是鈍角。
師:從這幾道題中,還知道了什么?
生:在一個(gè)三角形中最多有一個(gè)直角或一個(gè)鈍角。
師:大家的判斷真是有理有據(jù),算一算,每個(gè)三角形中被去撕去的角是多少度。
學(xué)生計(jì)算后校對(duì)。
3.出示“想想做做”第4題。
師:你能算出下面三角形中∠3的度數(shù)嗎?
學(xué)生練習(xí)后,集體反饋。
4.出示“想想做做”第5題。
師:在一個(gè)直角三角形中,已知一個(gè)銳角的度數(shù),你能算出另一個(gè)銳角的度數(shù)嗎?先看第一個(gè)直角三角形,一個(gè)銳角是35°,另一個(gè)銳角是多少度?你是怎樣算的?
生1:因?yàn)橹苯侨切沃杏幸粋(gè)直角,所以,用180° - 90° - 35° = 55°,∠2等于55°。
生2:因?yàn)橹苯侨切沃杏幸粋(gè)角是90°,所以,兩個(gè)銳角的和一定是90°?梢灾苯佑90°減去∠1的度數(shù),得到∠2等于55°。
師:第二個(gè)直角三角形中,∠2等于多少度?
。裕
四、 總結(jié)評(píng)價(jià),延伸拓展
師:今天你的收獲是什么?你還有什么不明白的地方嗎?你還想學(xué)習(xí)三角形的什么知識(shí)?
學(xué)生口答。
師:學(xué)習(xí)了今天的知識(shí),我們還能利用它去研究一些更復(fù)雜的問題呢!有信心嗎?(有)我們來看這樣的問題。(出示第34頁思考題)這個(gè)問題請(qǐng)同學(xué)們課后去研究,如果誰發(fā)現(xiàn)了其中的規(guī)律,就把你發(fā)現(xiàn)的規(guī)律寫在黑板上,與大家共同分享。
《三角形的內(nèi)角和》教案5
【教學(xué)目標(biāo)】
1、利用電子白板,借助生活情景,通過“量一量”,“算一算”,“拼一拼”,“折一折”的方法,推想歸納出三角形內(nèi)角和是180°,并能應(yīng)用這一知識(shí)解決一些簡(jiǎn)單問題。
2、經(jīng)歷猜測(cè)——驗(yàn)證——得出結(jié)論——解釋與應(yīng)用的過程,體驗(yàn)“歸納”、“轉(zhuǎn)化”等數(shù)學(xué)思想方法。
3、通過數(shù)學(xué)活動(dòng)使學(xué)生獲得成功的體驗(yàn),增強(qiáng)自信心,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),探索精神和實(shí)踐能力。
【教學(xué)重、難點(diǎn)】
教學(xué)重點(diǎn):引導(dǎo)學(xué)生發(fā)現(xiàn)三角形內(nèi)角和是180°。 教學(xué)難點(diǎn):用不同方法驗(yàn)證三角形的內(nèi)角和是180°。 【教學(xué)過程】
一、創(chuàng)設(shè)情景,提出問題
小游戲:猜一猜藏在信封后面的是什么三角形。(出示)
師:三角形的這三個(gè)角究竟存在什么奧秘呢,我們一起來研究研究。
【設(shè)計(jì)意圖:運(yùn)用電子白板,游戲引入,激起學(xué)生對(duì)于三角形已有知識(shí)的回憶,為下面探求新的知識(shí)作好鋪墊。創(chuàng)設(shè)疑問,引出要探討的問題,調(diào)動(dòng)學(xué)生學(xué)習(xí)的興趣!
二、動(dòng)手實(shí)踐、自主探究
師:什么是內(nèi)角??jī)?nèi)角和是什么意思?三角形的內(nèi)角和是多少度呢?
1.從特殊入手——計(jì)算直角三角板的內(nèi)角和。
。1)師生拿出30度直角三角板
師:這是什么?是什么三角形?這個(gè)角是多少度?它的內(nèi)角和是多少度,請(qǐng)口算?
。2)再拿出45度直角三角板。
師:這是什么三角形?這個(gè)角是多少度?它的內(nèi)角和是多少度?
(3)師:通過剛才的計(jì)算,你有什么發(fā)現(xiàn)?
生:這兩個(gè)三角形內(nèi)角和都是180°。
【設(shè)計(jì)意圖:這一環(huán)節(jié)先讓學(xué)生在明確三角形內(nèi)角和的概念基礎(chǔ)上,先借助電子白板出示特殊三角形——“直角三角形”,讓學(xué)生初步感知三角形的內(nèi)角和,通過計(jì)算學(xué)生很容易發(fā)現(xiàn)直角三角形的內(nèi)角和是180度,為學(xué)生作進(jìn)一步猜想奠定理論基礎(chǔ)!
2、由特殊到一般——猜想驗(yàn)證,發(fā)現(xiàn)規(guī)律。
。1)提出猜想
師:其他所有三角形的內(nèi)角和是否也是180°?
生:是、 不是……
師:有的說是,有的說不是,我們的猜想對(duì)不對(duì)呢,需要驗(yàn)證。
。ǔ鍪拘〗M調(diào)查表。)
。2)驗(yàn)證猜想(生測(cè)量計(jì)算,師巡視指導(dǎo),收集回報(bào)的素材)
師:哪個(gè)小組愿意將您們組的發(fā)現(xiàn)與大家分享一下?
生上臺(tái)展示:我們小組研究的是直角三角形(銳角三角形、鈍角三角形),我們測(cè)量它的三個(gè)角分別是 度 度 度,內(nèi)角和是180°,我們發(fā)現(xiàn)直角三角形(銳角三角形、鈍角三角形)的內(nèi)角和是180°)
師:研究銳角三角形(銳角三角形、鈍角三角形)的小組請(qǐng)舉手,你們的結(jié)論和他們一樣嗎?請(qǐng)你們小組來談?wù)勀銈兊陌l(fā)現(xiàn)!
【設(shè)計(jì)意圖:實(shí)物投影儀在這個(gè)環(huán)節(jié)發(fā)揮了重要的作用,學(xué)生充分展示自己的想法。在初步感知的基礎(chǔ)上,教師讓學(xué)生猜測(cè)是否所有的三角形的內(nèi)角和都一樣呢?這個(gè)問題為后面的猜測(cè)和驗(yàn)證進(jìn)行鋪墊,引發(fā)思考,激發(fā)學(xué)習(xí)興趣。然后再通過算出特殊的三角形的內(nèi)角和推廣到猜測(cè)所有三角形的內(nèi)角和,引導(dǎo)學(xué)生從特殊三角形過渡到一般三角形的驗(yàn)證規(guī)律。】
。3)揭示規(guī)律
師:通過計(jì)算我們發(fā)現(xiàn)直角三角形的內(nèi)角和是180°,銳角三角形的內(nèi)角和是——180度,鈍角三角形的內(nèi)角和也是——180度,這就驗(yàn)證了我們的猜想。現(xiàn)在我們可以說所有的三角形的內(nèi)角和是(完善課題180°)。
注:學(xué)生的匯報(bào)中可能會(huì)出現(xiàn)答案不是唯一的情況,如:180°、179°、181°等。(板書)(分別對(duì)這幾個(gè)數(shù)進(jìn)行統(tǒng)計(jì))
師:觀察這些測(cè)量結(jié)果你能發(fā)現(xiàn)什么?(三角形內(nèi)角和大約是180°左右)
。4)方法提升。
師:我們從直角三角形——銳角三角形——鈍角三角形——推出所有三角形的內(nèi)角和,這種由個(gè)別到一般的推理方法,在數(shù)學(xué)上叫歸納推理(板書)歸納推理是重要的推理方法。
【設(shè)計(jì)意圖:通過度量、比較這一活動(dòng),讓學(xué)生在實(shí)踐中充分感知三角形的內(nèi)角和大小。但由于測(cè)量本身有差異,教師并沒有直接告知三角形內(nèi)角和的結(jié)論,而是讓學(xué)生去另辟蹊徑想辦法驗(yàn)證前面的猜想,想一想有沒有別的方法來求三角形的內(nèi)角和,讓思維真正“展翅高飛”,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性、自主性!
3、剪拼法再次驗(yàn)證——轉(zhuǎn)化思想的運(yùn)用。
師:剛才我們通過測(cè)量發(fā)現(xiàn)了三角形的內(nèi)角和是180°,現(xiàn)在我們不用量角器測(cè)量了,你能想辦法證明三角形的內(nèi)角和是180°嗎?先思考再動(dòng)手做。
生探究,師巡視指導(dǎo),收集匯報(bào)素材。(呈現(xiàn)作品——說方法——統(tǒng)計(jì)點(diǎn)評(píng))
班內(nèi)交流,匯報(bào)撕拼法、折疊法。
師:將三角形的內(nèi)角通過剪拼、折疊,轉(zhuǎn)化成平角,你們應(yīng)用了一種重要的數(shù)學(xué)思想——轉(zhuǎn)化(板書),轉(zhuǎn)化就是將我們不會(huì)直接解決的新問題,變成已會(huì)的舊知識(shí),進(jìn)而解決。
【設(shè)計(jì)意圖:孩子的智慧來自于動(dòng)手,電子白板適時(shí)演示,讓學(xué)生通過“剪一剪,拼一拼,折一折”等操作方法,猜想、驗(yàn)證得出結(jié)論:三角形的內(nèi)角和是180°,并利用語言概括出結(jié)論,提高語言表達(dá)能力!
4.展示——再次強(qiáng)化。
師:現(xiàn)在大家知道這幾個(gè)三角形的內(nèi)角和是多少度嗎?
師:我們可以請(qǐng)電腦來給我們驗(yàn)證一下。
。ㄒ氚装澹ㄟ^拖動(dòng)演示三角形從小到大度數(shù)的不斷變化)
結(jié)論:不論三角形的大小、形狀怎樣變化,任何三角形的內(nèi)角和都是180°。
【設(shè)計(jì)意圖:讓學(xué)生在白板上親眼觀看到拖拉出類別不同的'三角形,讓學(xué)生在拖動(dòng)的過程中觀察、體驗(yàn)。學(xué)生興趣盎然,學(xué)習(xí)氣氛熱烈,學(xué)生不僅感受到這3個(gè)三角形的內(nèi)角和是180°,還隨著電子白板上這個(gè)三角形的任意拖動(dòng),發(fā)現(xiàn)三角形的3個(gè)角的度數(shù)在不斷的變化,而三角形的內(nèi)角和則始終沒有變化,仍然是180°,深刻地理解了任意三角形的內(nèi)角和都是180°。而這,恰恰就是本課的教學(xué)重點(diǎn)和難點(diǎn)。傳統(tǒng)課中不容易突破的教學(xué)重難點(diǎn)輕而易舉的攻破。抽象的知識(shí)變得直觀、具體,促進(jìn)學(xué)生知識(shí)內(nèi)化的過程!
三、鞏固應(yīng)用,內(nèi)化提高
1.介紹科學(xué)家帕斯卡(白板出示帕斯卡的資料)
2.練習(xí)
。1). 做一做:在一個(gè)三角形中,∠1=140度, ∠3=25度,求∠2的度數(shù)。
。2). 求出下列三角形中各個(gè)角的度數(shù)。(書88頁第9題)
。3). 算一算(書88頁第10題):爸爸給小紅買了一個(gè)等腰三角形的風(fēng)箏。它的一個(gè)底角是70°,它的頂角是多少度?
【設(shè)計(jì)意圖:練習(xí)中使用白板的交互性,學(xué)生更愿意參與,得出結(jié)果也更有成就感。素質(zhì)教育要求我們要面向全體學(xué)生。為此,根據(jù)問題的不同難度,教學(xué)時(shí)兼顧到不同層次的學(xué)生,使每位學(xué)生都有所收獲,都有機(jī)會(huì)體會(huì)到成功的喜悅。設(shè)計(jì)練習(xí)有新意,同時(shí)也注意了坡度。既有基本練習(xí),也有發(fā)展性練習(xí),盡最大努力體現(xiàn)因材施教!
四、課后思考、拓展延伸
同學(xué)們,數(shù)學(xué)奧妙無窮,三角形是邊數(shù)最少的封閉平面圖形,那么,四邊形五邊形六邊形(出圖示)……的內(nèi)角和是多少度,他們又有什么規(guī)律呢?有興趣的同學(xué)下課之后可繼續(xù)研究,下課。
《三角形的內(nèi)角和》教案6
教學(xué)內(nèi)容
探索與發(fā)現(xiàn):三角形內(nèi)角和(教材24~26頁)。
教學(xué)目標(biāo)
1.知識(shí)目標(biāo):讓學(xué)生通過“測(cè)量、撕拼、折疊、猜想、驗(yàn)證”等方法,探索并發(fā)現(xiàn)“三角形內(nèi)角和等于180°”。
2.技能目標(biāo):能運(yùn)用三角形內(nèi)角和的性質(zhì)解決一些簡(jiǎn)單的問題。
3.情感目標(biāo):在活動(dòng)中,讓學(xué)生體驗(yàn)主動(dòng)探究數(shù)學(xué)規(guī)律的樂趣,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情。
重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn):探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°。
教學(xué)難點(diǎn):掌握探究方法,學(xué)會(huì)運(yùn)用三角形內(nèi)角和的性質(zhì)。
學(xué)具準(zhǔn)備
各種 三 角形、剪刀、量角 器、課件。
教學(xué) 過程
一、創(chuàng)設(shè)情境,揭示課題。
1.播放課件,提問: 這些三角形在爭(zhēng)論什么?
教師:是在爭(zhēng)論關(guān)于自己內(nèi)角和的大小。
2.教師:什么是三角形的內(nèi)角和?( 板書:內(nèi)角和)
講解:三角形內(nèi)兩條邊所夾的角就叫做這個(gè)三角形的`內(nèi)角。每個(gè)三角形都有三個(gè)內(nèi)角,這三個(gè)內(nèi)角的度數(shù)加起來就是三角形的內(nèi)角和。
二、自主探究,合作交流。
。ㄒ唬┨岢鰡栴}。
1.你認(rèn)為誰說得對(duì)?你是怎么想的?
2.你有什么辦法可以比較一下這些三角形的內(nèi)角和呢?
學(xué)生可能會(huì)說:用量角器量一量三個(gè)內(nèi)角各是多少度,把它們加起來,再比較。
。ǘ┨剿髋c發(fā)現(xiàn)。
1.初步探索。
。1)量一量。
了解活動(dòng)要求:
A.在練習(xí)本上畫一個(gè)三角形,量一量三角形三個(gè)內(nèi)角的度數(shù)并標(biāo)注。(測(cè)量時(shí)要認(rèn)真,力求準(zhǔn)確。)
B.把測(cè)量結(jié)果記錄在表 格中,并計(jì)算三角形內(nèi)角和。
C.討論:從剛才的測(cè)量和計(jì)算結(jié)果中,你發(fā)現(xiàn)了什么?(引導(dǎo)學(xué)生發(fā)現(xiàn)每個(gè)三角形 的三個(gè)內(nèi)角和都在180°左右。)
。2)提出猜想。
剛才我們通過測(cè)量和計(jì)算發(fā)現(xiàn)了三角形內(nèi)角和都在180°度左右,那你能不能大膽的猜測(cè)一下:三角形內(nèi)角和是否相等?三角形的內(nèi)角和等于多少度呢?
2.動(dòng)手操作,驗(yàn)證猜想。
教師:這個(gè)猜想是否成立呢?我們要想辦法來驗(yàn)證一下。
教師引導(dǎo):180°,跟我們學(xué)過的什么角有關(guān)?我們課前準(zhǔn)備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個(gè)內(nèi)角轉(zhuǎn)換成一個(gè)平角呢?
。1)小組合作,討論驗(yàn)證方法。
(2)分組匯報(bào),討論質(zhì)疑。
學(xué)生可能會(huì)出現(xiàn)的方法:
、偎浩吹姆椒。
把三個(gè)角撕下來,拼在一起,3個(gè)角拼成了一個(gè)平角,所以三角形內(nèi)角和就是180°。
教師:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結(jié)論呢?
②折一折的方法。
把三角形的角1折向它的對(duì)邊,使頂點(diǎn)落在對(duì)邊上,然后另外兩個(gè)角相向?qū)φ,使它們的頂點(diǎn)與
角1的頂點(diǎn)互相重合,證明了各種三角形內(nèi)角和都等于180°。
3.課件演示,歸納總結(jié),得出結(jié)論。
(1)引導(dǎo)學(xué)生得出結(jié)論。
孩子們,三角形內(nèi)角和到底等于多少度呢?“
學(xué)生一定會(huì)高興地喊:“180°!”
。2)總結(jié)方法,齊讀結(jié)論。
教 師:我們通過動(dòng)作操作,折一折,拼一拼,把三角形的三個(gè)內(nèi)角轉(zhuǎn)換成了一個(gè)平角,成功的得到了這個(gè)結(jié)論,讓我們?yōu)樽约旱某晒恼疲?/p>
。3)解釋測(cè)量誤差。
教師:為什么我們剛才通過測(cè)量,計(jì)算出來的三角形內(nèi)角和不是正好180°呢?
那是因?yàn)槲覀冊(cè)跍y(cè)量時(shí),由于測(cè)量工具、測(cè)量操作等各方面的原因,使我們的測(cè)量結(jié)果存在一的誤差。實(shí)際上,三角形內(nèi)角和就等于180°。
三、探究結(jié)果匯報(bào)。
教師:現(xiàn)在你知道這些三角形誰說得對(duì)了嗎?(都不對(duì)。
學(xué)生:因?yàn)槿切蝺?nèi)角和等于1 80°。 (齊讀)
教師小結(jié):三角形的形狀和大小雖然不同,但 是三角形的內(nèi)角和都是180度。
四、課堂應(yīng)用,鞏固加深。
1.試一試。
數(shù)學(xué)課本25頁。
2.練一練。
。1)數(shù)學(xué)書25頁第一題。(生獨(dú)立解決。)
。2)數(shù)學(xué)書25頁第二題。(動(dòng)手量一量。)
拼成的四邊形的內(nèi)角和是( )。
拼成的三角形的內(nèi)角和是( )。
五、課堂作業(yè)設(shè)計(jì)。
教材26頁4、5、6題。
《三角形的內(nèi)角和》教案7
教學(xué)內(nèi)容:教材第130~131頁例1、例2,“練一練”和練習(xí)二十五。
教學(xué)要求:
1.使學(xué)生認(rèn)識(shí)和掌握三角形內(nèi)角和的結(jié)論,并能應(yīng)用結(jié)論求三角形里未知角的度數(shù)。
2.培養(yǎng)學(xué)生動(dòng)手操作的能力,并在實(shí)踐的過程中探索規(guī)律。
教具學(xué)具準(zhǔn)備:銳角三角形、鈍角三角形、直角三角形的紙片各一個(gè);學(xué)生每人準(zhǔn)備量角器、小剪刀、長(zhǎng)方形紙片各一張。
教學(xué)過程:
一、復(fù)習(xí):
1.請(qǐng)同學(xué)們拿出小剪刀、長(zhǎng)方形紙片,剪一個(gè)直角三角形,個(gè)銳角三角形和一個(gè)鈍角三角形。
2提問:這三個(gè)三角形有什么特點(diǎn)呢?
二、認(rèn)識(shí)三角形的內(nèi)角和
1.計(jì)算三角形的內(nèi)角和。
現(xiàn)在請(qǐng)同學(xué)們看課本第130頁,這里有三個(gè)三角形。我們把三角形的每一個(gè)角叫做它的內(nèi)角,(板書:內(nèi)角)大家量一量每個(gè)三角形的三個(gè)內(nèi)角,然后分別算一算,每個(gè)三角形的三個(gè)內(nèi)角和是多少度。
提問:第一個(gè)是什么三角形?三個(gè)內(nèi)角和是多少度?
第二個(gè)是什么三角形?三個(gè)內(nèi)角和是多少度?
第三個(gè)是什么三角形?三個(gè)內(nèi)角和是多少度?
銳角三角形、鈍角三角形、直角三角形的內(nèi)角和有什么共同的.特點(diǎn)嗎?你發(fā)現(xiàn)三角形的內(nèi)角和有什么規(guī)律嗎?
指出:剛才這三個(gè)三角形的內(nèi)角度數(shù)是自己量的,每個(gè)三角形的內(nèi)角和是自己算的,結(jié)果發(fā)現(xiàn),不管什么三角形,內(nèi)角和都是180。這個(gè)規(guī)律對(duì)不對(duì)呢?我們來做一做實(shí)驗(yàn)。
(1)請(qǐng)大家拿出一個(gè)直角三角形,跟著老師這樣折一折。(演示、操作)
提問:這兩個(gè)銳角正好拼成一個(gè)什么角?再加原來一個(gè)直角是什么角?多少度?
指出:直角三角形的內(nèi)角和是180
(2)再拿一個(gè)銳角三角形,大家跟著老師這樣折一折。(演示、指出:銳角三角形的內(nèi)角和也是180。操作)原來的三個(gè)內(nèi)角拼在一起,正好是一個(gè)什么角?多少度?
(3)按照剛才的方法,請(qǐng)同學(xué)們自己拿一個(gè)鈍角三角形折一折,把三個(gè)角拼在一起。(老師巡視指導(dǎo))
提問:鈍角三角形的三個(gè)內(nèi)角也正好拼成了一個(gè)什么角?是多少度?
指出:鈍角三角形的內(nèi)角和還是180。
(4)提問:通過剛才把三角形折一折的實(shí)驗(yàn),證明我們發(fā)現(xiàn)的規(guī)律對(duì)嗎?你能把這個(gè)規(guī)律說一遍嗎?(板書:三角形的內(nèi)角和是180)
2.求三角形的未知角。請(qǐng)同學(xué)們根據(jù)這個(gè)規(guī)律,來算一算下面三角形里第三個(gè)角形度數(shù)。
(1)出示例1。讓學(xué)生讀題。
提問:三角形三個(gè)內(nèi)角的度數(shù)和是多少?已知/1、/2的度數(shù),你能求/3的度數(shù)嗎?請(qǐng)大家自己算一算,/3等于多少度?計(jì)算后提問:你是怎樣算的?/3等于多少度?說明列式格式,板書出算式和結(jié)果。
(2)做“練—練”。指名板演,其余學(xué)生做在練習(xí)本上。
集體訂正。讓板演學(xué)生說說是怎樣想的。
(3)出示例2。讓學(xué)生讀題。
提問:這道題已知什么,求什么?指名學(xué)生回答,老師在黑板上畫圖。
提問:等腰三角形有什么特點(diǎn)呢?你能求出底角的度數(shù)嗎?大家做一做。
集體訂正:你是怎樣算的?為什么?
(4)出示想一想:等邊三角形的每個(gè)角應(yīng)該是多少度?為什么?
三、鞏固練習(xí)
1.練習(xí)二十五第l題。
指名三人板演,其余學(xué)生分三組,每組一題,做在練習(xí)本上。
請(qǐng)大家用量角器量一量你做的那道題里要求的哪個(gè)角,看一看與算出的結(jié)果是否-樣。
指出:不管是銳角三角形、直角三角形,還是鈍角三角形,三個(gè)內(nèi)角的和都是180。
2.練習(xí)二十五第3題。
讓學(xué)生口答第(1)、(2)題,并說明理由。指名口答第(3)題,說說是怎樣想的。
指出:直角三角形兩個(gè)銳角和是90,用90減去已知的銳角的度數(shù),就等于另一個(gè)銳角的度數(shù)。
3.練習(xí)二十五第6題。讓學(xué)生讀題理解題意。
提問:等腰三角形有什么特點(diǎn)?知道一個(gè)底角的度數(shù),你會(huì)求頂角的度數(shù)嗎?請(qǐng)大家做在練習(xí)本上。集體訂正。
四、課堂小結(jié)
這節(jié)課學(xué)習(xí)了三角形的內(nèi)角和。(板書課題)誰來說一說,你學(xué)會(huì)了哪些知識(shí)?
五、課堂作業(yè):練習(xí)二十五第2、4、5題。
《三角形的內(nèi)角和》教案8
教學(xué)目標(biāo):
1、讓學(xué)生親自動(dòng)手,通過量、剪、拼等活動(dòng)發(fā)現(xiàn)、證實(shí)三角形內(nèi)角和是180°,并會(huì)應(yīng)用這一知識(shí)解決生活中簡(jiǎn)單的實(shí)際問題。
2、讓學(xué)生在動(dòng)手獲取知識(shí)的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)、探索精神和實(shí)踐能力。并通過動(dòng)手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動(dòng),向?qū)W生滲透“轉(zhuǎn)化”數(shù)學(xué)思想。
3、使學(xué)生體驗(yàn)成功的喜悅,激發(fā)學(xué)生主動(dòng)學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn):
探究發(fā)現(xiàn)和驗(yàn)證“三角形的內(nèi)角和180度”這一規(guī)律的過程,并歸納總結(jié)出規(guī)律。
教學(xué)難點(diǎn):
對(duì)不同探究方法的指導(dǎo)和學(xué)生對(duì)規(guī)律的靈活應(yīng)用。
教學(xué)準(zhǔn)備:
多媒體課件、學(xué)具。
教學(xué)過程
一、創(chuàng)設(shè)情境,激趣引入。
認(rèn)識(shí)三角形內(nèi)角
1、提問:我們已經(jīng)認(rèn)識(shí)了什么是三角形,誰能說出三角形有什么特點(diǎn)?
2、請(qǐng)看屏幕(課件演示三條線段圍成三角形的過程)。三條線段圍成三角形后,在三角形內(nèi)形成了三個(gè)角,(課件分別閃爍三個(gè)角及的弧線),我們把三角形里面的這三個(gè)角分別叫做三角形的內(nèi)角。三個(gè)內(nèi)角的度數(shù)和就是三角形的內(nèi)角和。
(設(shè)計(jì)意圖:讓學(xué)生整體感知三角形內(nèi)角和的`知識(shí),有效地避免了新知識(shí)的橫空出現(xiàn)。)
二、動(dòng)手操作,探究新知。
1、猜想
先后出示兩個(gè)直角三角形,讓學(xué)生說出各個(gè)內(nèi)角的度數(shù),并求出這兩個(gè)直角三角形的內(nèi)角和。
提問:從剛才的計(jì)算結(jié)果中,你想說些什么呢?
(引出猜想:三角形的內(nèi)角和是180°)
(設(shè)計(jì)意圖:引導(dǎo)學(xué)生提出合理猜測(cè):三角形的內(nèi)角和是180°。)
2、驗(yàn)證
這只是我們的猜想,事實(shí)上是不是這樣的呢?還需要我們進(jìn)行驗(yàn)證。想想,你有什么辦法驗(yàn)證三角形的內(nèi)角和是不是180°呢?
(引導(dǎo)學(xué)生說出量一量、拼一拼、畫一畫等方法)
提問:現(xiàn)實(shí)中的三角形有千千萬萬,是不是我們都要對(duì)其進(jìn)行一一驗(yàn)證呢?
引導(dǎo)學(xué)生回答出只要在銳角三角形、鈍角三角形和直角三角形三種三角形分別進(jìn)行驗(yàn)證就行。
組織學(xué)生以小組為單位進(jìn)行動(dòng)手操作驗(yàn)證。(每個(gè)小組都有三種三角形,讓學(xué)生選擇一種三角形,用自己喜歡的方法進(jìn)行驗(yàn)證,把驗(yàn)證的過程和結(jié)果在小組里進(jìn)行討論交流。最后,小組派代表進(jìn)行匯報(bào))
(設(shè)計(jì)意圖:讓學(xué)生帶著問題動(dòng)手、動(dòng)口、動(dòng)腦,調(diào)動(dòng)多種感官參與數(shù)學(xué)學(xué)習(xí)活動(dòng),通過操作、剪拼、驗(yàn)證,讓學(xué)生去探索、去實(shí)驗(yàn)、去發(fā)現(xiàn),從而讓學(xué)生在動(dòng)手操作積極探索的活動(dòng)過程中掌握知識(shí),積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),發(fā)展空間觀念和推理能力。)
3、總結(jié)
通過驗(yàn)證,你們得出了什么結(jié)論呢?(板書:結(jié)論:三角形的內(nèi)角和是180°)
三、應(yīng)用延伸,解決問題。
1、求三角形中一個(gè)未知角的度數(shù)。
(1)在三角形中,已知∠1=70°,∠2=50°,求∠3。
(2)在三角形中,已知∠1=78°,∠2=44°,求∠3。
(3)選算式:(1)∠A=180°-55°(2)∠A=180°-90°-55°(3)∠A=90°-55°
(分別請(qǐng)同學(xué)們板演,并說出解題思路。)
2、判斷
(1) 一個(gè)三角形的三個(gè)內(nèi)角度數(shù)是:80° 、75° 、 24° 。 ( )
(2)三角形越大,它的內(nèi)角和就越大。 ( )
(3)一個(gè)三角形至少有兩個(gè)角是銳角。 ( )
(4)鈍角三角形的兩個(gè)銳角和大于90°。 ( )
(請(qǐng)同學(xué)回答,并說出判斷的依據(jù))
3、解決生活實(shí)際問題。
爸爸給小紅買了一個(gè)等腰三角形的風(fēng)箏,它的一個(gè)底角是70°,它的頂角呢?
(讓學(xué)生結(jié)合題意畫圖,再說出答題的思路)
4、拓展練習(xí)。
利用三角形內(nèi)角和是180°,求出下面四邊形、六邊形的內(nèi)角和?
圖 形
名 稱 三角形 四邊形 五邊形 六邊形
有幾個(gè)三角形
內(nèi)角和
(設(shè)計(jì)意圖:習(xí)題是溝通知識(shí)聯(lián)系的有效手段。在本節(jié)課的四個(gè)層次的練習(xí)中, 能充分注意溝通知識(shí)之間的內(nèi)在聯(lián)系, 使學(xué)生從整體上把握知識(shí)的來龍去脈和縱橫聯(lián)系,逐步形成對(duì)知識(shí)的整體認(rèn)知, 構(gòu)建自己的認(rèn)知結(jié)構(gòu), 從而發(fā)展思維, 提高綜合運(yùn)用知識(shí)解決問題的能力。)
四、全課總結(jié),梳理反思。
今天你學(xué)到了哪些知識(shí)?是怎樣獲取這些知識(shí)的?你感覺學(xué)得怎么樣?
(設(shè)計(jì)意圖:引導(dǎo)學(xué)生回顧與反思學(xué)習(xí)過程,進(jìn)一步梳理知識(shí),優(yōu)化認(rèn)知,感悟?qū)W習(xí)方法,從學(xué)會(huì)走向會(huì)學(xué),帶著收獲的喜悅結(jié)束本節(jié)課的學(xué)習(xí)。)
五、板書設(shè)計(jì):
三角形的內(nèi)角和
猜想:三角形的內(nèi)角和是180°。
驗(yàn)證:量一量、拼一拼、畫一畫
直角三角形
銳角三角形
鈍角三角形
結(jié)論:三角形的內(nèi)角和是180°。
《三角形的內(nèi)角和》教案9
[教學(xué)目標(biāo)]
1、通過測(cè)量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個(gè)內(nèi)角和的度數(shù)和等于180o。
2、已知三角形的兩個(gè)角的度數(shù),會(huì)求出第三個(gè)角的度數(shù)。
[教學(xué)重、難點(diǎn)]
1、探索和發(fā)現(xiàn)三角形三個(gè)內(nèi)角和的度數(shù)和等于180o。
2、已知三角形的兩個(gè)角的度數(shù),會(huì)求出第三個(gè)角的度數(shù)。
[教學(xué)準(zhǔn)備]學(xué)生、老師準(zhǔn)備幾個(gè)形狀不同的三角形、量角器。
[教學(xué)過程]
一、創(chuàng)設(shè)情境,激趣質(zhì)疑
教材第30頁創(chuàng)設(shè)的情境,激發(fā)探索的興趣。
二、自主探索
1、提出問題:怎樣得到一個(gè)三角形的內(nèi)角和?
大多數(shù)學(xué)生會(huì)想到測(cè)量角度。
2、小組活動(dòng):測(cè)量三角形的三個(gè)內(nèi)角的度數(shù),并記錄在第30頁的表格中。
3、匯報(bào)測(cè)量結(jié)果和得到的結(jié)論。
發(fā)現(xiàn)大小、形狀不同的每個(gè)三角形,三個(gè)內(nèi)角和的度數(shù)和都接近180o。
4、進(jìn)一步探索:三角形的.三個(gè)內(nèi)角的和是否正好等于180o呢?
小組活動(dòng)探索方法。
5、得出結(jié)論。
三、試一試:
已知三角形的兩個(gè)角的度數(shù),運(yùn)用三角形的三個(gè)角的度數(shù)和是180o,求出第3個(gè)角的度數(shù)。
四、練一練
運(yùn)用三角形內(nèi)角和等于180o,判斷題中的三個(gè)三角形說的對(duì)嗎?
[板書設(shè)計(jì)]
三角形的內(nèi)角和
測(cè)量三個(gè)角的度數(shù)求和:結(jié)論:
《三角形的內(nèi)角和》教案10
學(xué)習(xí)目標(biāo):
(1) 知識(shí)與技能 :
掌握三角形內(nèi)角和定理的證明過程,并能根據(jù)這個(gè)定理解決實(shí)際問題。
(2) 過程與方法 :
通過學(xué)生猜想動(dòng)手實(shí)驗(yàn),互相交流,師生合作等活動(dòng)探索三角形內(nèi)角和為180度,發(fā)展學(xué)生的推理能力和語言表達(dá)能力。對(duì)比過去撕紙等探索過程,體會(huì)思維實(shí)驗(yàn)和符號(hào)化的理性作用。逐漸由實(shí)驗(yàn)過渡到論證。
通過一題多解、一題多變等,初步體會(huì)思維的多向性,引導(dǎo)學(xué)生的個(gè)性化發(fā)展。
(3)情感態(tài)度與價(jià)值觀:
通過猜想、推理等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)活動(dòng)充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生主動(dòng)探索,敢于實(shí)驗(yàn),勇于發(fā)現(xiàn),合作交流。
一.自主預(yù)習(xí)
二.回顧課本
1、三角形的內(nèi)角和是多少度?你是怎樣知道的?
2、那么如何證明此命題是真命題呢?你能用學(xué)過的知識(shí)說一說這一結(jié)論的證明思路嗎?你能用比較簡(jiǎn)潔的語言寫出這一證明過程嗎?與同伴進(jìn)行交流。
3、回憶證明一個(gè)命題的.步驟
、佼媹D
、诜治雒}的題設(shè)和結(jié)論,寫出已知求證,把文字語言轉(zhuǎn)化為幾何語言。
、鄯治、探究證明方法。
4、要證三角形三個(gè)內(nèi)角和是180,觀察圖形,三個(gè)角間沒什么關(guān)系,能不能象前面那樣,把這三個(gè)角拼在一起呢?拼成什么樣的角呢?
、倨浇,②兩平行線間的同旁內(nèi)角。
5、要把三角形三個(gè)內(nèi)角轉(zhuǎn)化為上述兩種角,就要在原圖形上添加一些線,這些線叫做輔助線,在平面幾何里,輔助線常畫成虛線,添輔助線是解決問題的重要思想方法。如何把三個(gè)角轉(zhuǎn)化為平角或兩平行線間的同旁內(nèi)角呢?
① 如圖1,延長(zhǎng)BC得到一平角BCD,然后以CA為一邊,在△ABC的外部畫A。
、 如圖1,延長(zhǎng)BC,過C作CE∥AB
③ 如圖2,過A作DE∥AB
④ 如圖3,在BC邊上任取一點(diǎn)P,作PR∥AB,PQ∥AC。
三、鞏固練習(xí)
四、學(xué)習(xí)小結(jié):
(回顧一下這一節(jié)所學(xué)的,看看你學(xué)會(huì)了嗎?)
五、達(dá)標(biāo)檢測(cè):
略
六、布置作業(yè)
《三角形的內(nèi)角和》教案11
一、教材分析:
教材創(chuàng)設(shè)了一個(gè)有趣的問題情境,以此激發(fā)學(xué)生的興趣,引出探索活動(dòng)。首先,教師應(yīng)使學(xué)生明確“內(nèi)角”的意義,然后引導(dǎo)學(xué)生探索三角形內(nèi)角和等于多少。大多數(shù)學(xué)生會(huì)想到用測(cè)量角的方法,此時(shí)就可以安排小組活動(dòng)。每組同學(xué)可以畫出大小、形狀不同的若干個(gè)三角形,分別量出三個(gè)內(nèi)角的度數(shù),并求出它們的和,填寫在教材提供的表中。最后發(fā)現(xiàn),大小、形狀不同的三角形,每一個(gè)三角形內(nèi)角和都在180°左右。三角形的內(nèi)角和是否正好等于180°呢?教材中安排了兩個(gè)活動(dòng):一是把三角形三個(gè)內(nèi)角撕下來,再拼在一起,組成一個(gè)平角,因此三角形內(nèi)角和是180度。二是把三個(gè)內(nèi)角折疊在一起,發(fā)現(xiàn)也能組成一個(gè)平角。每個(gè)活動(dòng)都要使學(xué)生動(dòng)手試一試,加深對(duì)三角形內(nèi)角和的認(rèn)識(shí),體驗(yàn)三角形內(nèi)角和性質(zhì)的探索過程。
二、學(xué)生狀況分析:
學(xué)生在本課學(xué)習(xí)前已經(jīng)認(rèn)識(shí)了三角形的基本特征及分類,并且在四年級(jí)(上冊(cè))教材里已經(jīng)知道了兩塊三角尺上的每一個(gè)角的度數(shù),學(xué)生課上對(duì)數(shù)學(xué)知識(shí)、能力和思考問題的角度有一定的差異,因此比較容易出現(xiàn)解決問題的策略多樣化。
三、學(xué)習(xí)目標(biāo):
1.通過測(cè)量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個(gè)內(nèi)角的和等于180°。
2.知道三角形兩個(gè)角的度數(shù),能求出第三個(gè)角的度數(shù)。
3.發(fā)展學(xué)生動(dòng)手操作、觀察比較和抽象概括的能力。體驗(yàn)數(shù)學(xué)活動(dòng)的探索樂趣,體會(huì)研究數(shù)學(xué)問題的思想方法。
4.能應(yīng)用三角形內(nèi)角和的性質(zhì)解決一些簡(jiǎn)單的問題。
四、教具、學(xué)具準(zhǔn)備:
課件、6張三角形的紙、學(xué)生準(zhǔn)備任意三角形。
五、教學(xué)過程:
(一)設(shè)疑導(dǎo)入(2分鐘)
師:在平的數(shù)學(xué)學(xué)習(xí)中,我們經(jīng)常會(huì)使用一種工具——三角尺。(課件出示兩個(gè)三角尺)每個(gè)三角尺里都有三個(gè)角,我們把它叫內(nèi)角。(板書內(nèi)角)為了方便老師分別給兩個(gè)三角尺的內(nèi)角編上號(hào),誰能告訴我它們分別是多少度?
師:請(qǐng)同學(xué)們仔細(xì)觀察比較一下,這兩個(gè)三角形有什么共同之處?
生:它們的內(nèi)角和都是180°。
師:你是怎么得出180°的?
生:30°+60°+90°=180°
師:那第二個(gè)呢?
生:45°+45°+90°=180°
師:同學(xué)們,通過剛才的算一算,我們得到這兩個(gè)直角三角形的內(nèi)角和都是180°,由此你想到什么呢?(這兩個(gè)直角三角形的內(nèi)角和都是180°,那其他的三角形呢?)
生A:其他三角形的內(nèi)角和也是180°
(二)動(dòng)手操作,探究問題,以動(dòng)啟思(20分鐘)
1、師:這只是我們的一種猜測(cè),三角形的內(nèi)角和是否真的等于180°,還需要我們?nèi)ヲ?yàn)證。接下來,我們就來驗(yàn)證三角形的內(nèi)角和,老師為大家準(zhǔn)備了1號(hào)——6號(hào)6個(gè)三角形,下面請(qǐng)每個(gè)同學(xué)選擇一個(gè)三角形來驗(yàn)證。想一想,你準(zhǔn)備用什么樣的方法來驗(yàn)證三角形的內(nèi)角和,然后開始驗(yàn)證。
(1)小組合作,討論驗(yàn)證方法
(2)匯報(bào)驗(yàn)證方法、結(jié)果
現(xiàn)在我們一起交流一下驗(yàn)證的結(jié)果,交流的時(shí)候,你先介紹一下驗(yàn)證的是幾號(hào)三角形,然后說一說是什么三角形,最后說一說內(nèi)角和是多少。
師:同學(xué)們我、其實(shí)剛才我在驗(yàn)證的時(shí)候很多同學(xué)有的還是量一量的方法,從剛才過程中來看量一量的方法還是有誤差,所以老師建議大家可以是有更加準(zhǔn)確、簡(jiǎn)便的方法來驗(yàn)證。
師:好,請(qǐng)同學(xué)們觀察大屏幕,這些三角形的內(nèi)角和都是180°,那么請(qǐng)問,現(xiàn)在我們能不能以下結(jié)論:所以的三角形的內(nèi)角和都是180°呢?
生:可以
師:難道你們都沒有懷疑這是老師故意安排好的呢?(沒有)那我告訴你們這就是老師故意安排好的,或許也是一種巧合。我們?cè)诳茖W(xué)研究的道路上就要敢于質(zhì)疑的精神,接下來我們?cè)趺崔k?(我們應(yīng)該在找一些三角形驗(yàn)證)這個(gè)建議非常好,找一些任意三角形這樣才有說服力。
師:每個(gè)同學(xué)都準(zhǔn)備的三角形帶了嗎?下面就請(qǐng)同學(xué)來驗(yàn)證你們自己帶來的三角形的內(nèi)角和究竟是多少度。學(xué)生匯報(bào)交流。
同學(xué)們我們這樣驗(yàn)證,驗(yàn)證完嗎?(驗(yàn)證不完)
師:剛才我們通過算一算、拼一拼、折一折的方法,不管是老師提供的三角形還是你們自己準(zhǔn)備的三角形這些直角、銳角、鈍角三角形的內(nèi)角和都是180°,那么我們可以概括成什么呢?
生:我們發(fā)現(xiàn)每個(gè)三角形的三個(gè)內(nèi)角和都是180°。
課件出示結(jié)論:三角形的內(nèi)角和是180°)。
師:看來我們的猜測(cè)是正確的,現(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是1800”。(板書:三角形的.內(nèi)角和是1800
。ㄋ模╈柟叹毩(xí):(15分鐘)
學(xué)會(huì)了知識(shí),我們就要懂得去運(yùn)用。下面,我們就根據(jù)三角形內(nèi)角和的知識(shí)來解決一些相關(guān)的數(shù)學(xué)問題。(課件)
師:一塊三角尺的內(nèi)角和180°,兩塊同樣的三角尺拼成的一個(gè)大三角形的內(nèi)角和又是多少呢?
師:把大三角形平均分成兩份。它的(指均分后的一個(gè)小三角形)內(nèi)角和是多少度?(生有的答90 °,有的180 °。)
師:哪個(gè)對(duì)?為什么?
生:180°,因?yàn)樗是一個(gè)三角形。
師:每個(gè)小三角形的度數(shù)是180°,那么這樣的兩個(gè)小三角形拼成一個(gè)大三角形,內(nèi)角和是多少度?這時(shí)學(xué)生的答案又出現(xiàn)了180°和360°兩種。
師:究竟誰對(duì)呢?大家可以在小組內(nèi)拼一拼,進(jìn)行討論
生1:180°,因?yàn)閮蓚(gè)三角形拼在一起,就變成了一個(gè)三角形了,每個(gè)三角形的內(nèi)角和總是180°。
生2:我發(fā)現(xiàn)兩個(gè)小三角形拼成一個(gè)大三角形,拼接在一起的兩條邊上的兩個(gè)角沒有了,就比原來兩個(gè)三角形少180 °,所以大三角形的內(nèi)角和還是180°,不是360°。
師:三角形不論位置、大小、形狀如何,它的內(nèi)角和總是180°
1、三角形ABC是等腰三角形,角A是頂角等于50度,角B=?角C=?
教師引導(dǎo)學(xué)生復(fù)習(xí)等腰三角形的特征,再讓學(xué)生談?wù)勏敕ā?/p>
教師匯總解法:
180度-50度=130度130度÷2度=65度
知識(shí)拓展:三角形ABC是等腰三角形,角B是底角等于50度,頂角角A=?(學(xué)生自主完成匯報(bào)結(jié)果)教師匯總解法:
50度×2=100度180度-100度=80度
2、一個(gè)直角三角形,一個(gè)銳角為35度,求另一個(gè)銳角的度數(shù)。
教師帶領(lǐng)學(xué)生復(fù)習(xí)直角三角形的特征。(指名匯報(bào))解法不唯一,只要學(xué)生思路正確老師應(yīng)及時(shí)給與肯定。教師匯總解法:
(1)180度-90度=90度90度-35度=55度
(2)180度-35度=145度145度-90度=55度
(3)90度+35度=125度180度-125度=55度
(4)90度-35度=55度
3、下面的說法對(duì)嗎?
1)鈍角三角形的兩個(gè)銳角之和大于90度。()
2)大三角形的內(nèi)角和比小三角形的內(nèi)角和大。()
3)一個(gè)直角三角形中最多有一個(gè)直角。()
學(xué)生自主理解題意,教師引導(dǎo)學(xué)生說出對(duì)或錯(cuò)的原因。
4、老師這還有一個(gè)難題需要解決,同學(xué)們?cè)敢饨邮芴魬?zhàn)嗎?
師:老師手里有一個(gè)信封,信封里露出一來個(gè)角,這個(gè)角的度數(shù)是45度,請(qǐng)同學(xué)們判斷一下,隱藏在信封里的三角形是什么三角形?
師:信封里還露出一來個(gè)角,這個(gè)角的度數(shù)是45度,它是這個(gè)三角形內(nèi)角中最小的銳角,請(qǐng)同學(xué)們判斷一下,隱藏在信封里的三角形是什么三角形?
5、想一想,下面圖形的內(nèi)角和分別是多少?
學(xué)生小組討論如何分割,教師巡視并參與討論,討論完后小組匯報(bào),指名板演。
。ㄎ澹┱n堂小結(jié)
師:一節(jié)課快要結(jié)束了,那么我們回想一下這節(jié)課你有什么收獲,什么感想?
《三角形的內(nèi)角和》教案12
設(shè)計(jì)說明
在整個(gè)教學(xué)設(shè)計(jì)中,本著“學(xué)貴在思,思源于疑”的思想,不斷創(chuàng)設(shè)問題情境,讓學(xué)生去探究、發(fā)現(xiàn)新知識(shí)的奧妙,從而讓學(xué)生在動(dòng)手操作、積極探究的活動(dòng)中掌握知識(shí),積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),發(fā)展空間觀念和推理能力。
遵循由特殊到一般的規(guī)律進(jìn)行探究活動(dòng)是這節(jié)課設(shè)計(jì)的主要特點(diǎn)之一。學(xué)生對(duì)三角板上每個(gè)角的度數(shù)都比較熟悉,從這里入手,先讓學(xué)生算出每塊三角板上三個(gè)內(nèi)角的和是180°,進(jìn)而引發(fā)學(xué)生猜想:其他三角形的內(nèi)角和也是180°嗎?接著引導(dǎo)學(xué)生小組合作,任意畫出不同類型的三角形,通過量一量、算一算,得出三角形的內(nèi)角和是180°或接近180°(測(cè)量誤差)。再引導(dǎo)學(xué)生通過剪拼的方法發(fā)現(xiàn)各類三角形的三個(gè)內(nèi)角都可以拼成一個(gè)平角。然后利用課件演示進(jìn)一步驗(yàn)證,由此獲得三角形的內(nèi)角和是180°的結(jié)論。這一系列的活動(dòng)潛移默化地向?qū)W生滲透了轉(zhuǎn)化的數(shù)學(xué)思想,為后面的學(xué)習(xí)奠定了必要的基礎(chǔ)。最后安排了三個(gè)層次的練習(xí),逐層加深。在練習(xí)的過程中,既激發(fā)了學(xué)生主動(dòng)解題的積極性,拓展了學(xué)生的思維,又兼顧到了智力水平發(fā)展較快的學(xué)生。
課前準(zhǔn)備
教師準(zhǔn)備 多媒體課件
學(xué)生準(zhǔn)備 三角板
教學(xué)過程
⊙復(fù)習(xí)導(dǎo)入
師:請(qǐng)同學(xué)們回憶一下,我們以前學(xué)過哪些平面圖形?(長(zhǎng)方形、正方形、平行四邊形、三角形等)
師:這些是我們?cè)缫颜J(rèn)識(shí)的平面圖形,那么你們知道長(zhǎng)方形有什么特征嗎?(學(xué)生匯報(bào):長(zhǎng)方形的對(duì)邊相等,有四個(gè)角,且四個(gè)角都是直角)
師:這四個(gè)角一共是多少度?(360°)
師:你是怎么算的?(90°×4=360°)
師:請(qǐng)看大屏幕。(課件演示三條線段圍成三角形的過程)三條線段圍成三角形后,在三角形內(nèi)形成了三個(gè)角(課件分別顯示出三個(gè)角的弧線),我們把三角形里面的這三個(gè)角叫做三角形的內(nèi)角。
師:通過剛才的回憶,同學(xué)們知道長(zhǎng)方形四個(gè)內(nèi)角的和是360°,那么三角形的內(nèi)角和又是多少呢?這節(jié)課我們就來探究三角形的內(nèi)角和。(板書課題)
設(shè)計(jì)意圖:通過復(fù)習(xí)學(xué)過的平面圖形,喚醒學(xué)生的認(rèn)知。借助長(zhǎng)方形四個(gè)角都是直角的特征,學(xué)生通過計(jì)算很容易知道長(zhǎng)方形的內(nèi)角和是360°,從而質(zhì)疑三角形的內(nèi)角和是多少。這樣以問題情境開始,既豐富了學(xué)生的感官認(rèn)識(shí),又激發(fā)了學(xué)生的探究欲望。
⊙探究新知
1.探究特殊三角形的內(nèi)角和。
師:(課件出示一塊三角板)大家熟悉這塊三角板嗎?請(qǐng)拿出形狀與這塊一樣的三角板,并和同桌互相說一說各個(gè)角的度數(shù)。(課件出示由三角板抽象出的三角形)
師:這個(gè)三角形三個(gè)角的度數(shù)和是多少?(180°)你是怎樣知道的?(90°+45°+45°=180°)
明確:把三角形三個(gè)內(nèi)角的度數(shù)合起來就叫做三角形的內(nèi)角和。
師:(課件出示由另一塊三角板抽象出的三角形)這個(gè)三角形的內(nèi)角和是多少度?(90°+60°+30°=180°)
師:從剛才兩個(gè)三角形內(nèi)角和的計(jì)算中你發(fā)現(xiàn)了什么?(這兩個(gè)三角形的內(nèi)角和都是180°,且這兩個(gè)三角形都是直角三角形)
2.探究一般三角形的內(nèi)角和。
(1)剛才我們探究了直角三角形的內(nèi)角和是180°,那么其他任意三角形的內(nèi)角和又是多少度呢?請(qǐng)大家猜一猜。(大多數(shù)學(xué)生認(rèn)為也是180°)
(2)操作、驗(yàn)證一般三角形的內(nèi)角和是180°。
師:剛才大多數(shù)同學(xué)認(rèn)為三角形的內(nèi)角和是180°,但也有幾個(gè)同學(xué)不敢肯定,那么我們用什么方法來驗(yàn)證這個(gè)猜想是否正確呢?
①小組合作,探究驗(yàn)證方法。
師:請(qǐng)每位同學(xué)先獨(dú)立思考,然后把你的想法在小組內(nèi)交流,看一看哪個(gè)小組想出的方法最多。
②交流匯報(bào)。
預(yù)設(shè)
組1:我們小組用量角器把三角形的三個(gè)內(nèi)角的度數(shù)分別量出來,再加起來看一看是不是等于180°。
組2:我們小組猜想三角形的內(nèi)角和是180°,而平角的度數(shù)也是180°,如果三角形的三個(gè)內(nèi)角剛好能拼成一個(gè)平角,那么就說明三角形的內(nèi)角和是180°。所以我們小組把三角形的三個(gè)內(nèi)角剪下來,拼一拼,看一看能不能拼成一個(gè)平角。
、蹌(dòng)手操作,驗(yàn)證猜想。
師:請(qǐng)同學(xué)們選擇一種你喜歡的'方法來驗(yàn)證我們剛才的猜想,驗(yàn)證完,將你的結(jié)論在小組內(nèi)交流。(出示課堂活動(dòng)卡,教師巡視,參與各小組的驗(yàn)證活動(dòng),并給予適當(dāng)?shù)闹笇?dǎo))
師小結(jié):大家剛才量出來的結(jié)果或拼出來的結(jié)果都在180°左右,其實(shí)三角形的內(nèi)角和就是180°,因?yàn)樵跍y(cè)量或操作的過程中會(huì)產(chǎn)生誤差,所以數(shù)據(jù)會(huì)有一些偏差。
3.得出結(jié)論。
師:根據(jù)上面的驗(yàn)證,我們可以得出一個(gè)怎樣的結(jié)論?(三角形的內(nèi)角和是180°,教師板書:三角形的內(nèi)角和是180°)
設(shè)計(jì)意圖:學(xué)生通過操作、思考、反饋等過程,真正經(jīng)歷了有效的探究活動(dòng),先由直角三角形算出其內(nèi)角和,再用猜想、操作、驗(yàn)證等方法推導(dǎo)出一般三角形的內(nèi)角和,最后歸納得出所有三角形的內(nèi)角和都是180°。在這個(gè)過程中,學(xué)生不僅體會(huì)到了數(shù)學(xué)學(xué)習(xí)中歸納的思想方法,還感受到了數(shù)學(xué)與生活的密切聯(lián)系。
《三角形的內(nèi)角和》教案13
一、教學(xué)內(nèi)容:
三角形內(nèi)角和(教材85頁的例五)
二、教學(xué)目標(biāo):
1、2、3、知道三角形的內(nèi)角和是180°。正確計(jì)算三角形中某一個(gè)角的度數(shù)。培養(yǎng)學(xué)生分析、判斷的能力,滲透知識(shí)間的內(nèi)在聯(lián)系和轉(zhuǎn)化的數(shù)學(xué)思想。
三、教學(xué)重難點(diǎn)
理解并熟練運(yùn)用三角形的內(nèi)角和是180°。
四、教具學(xué)具準(zhǔn)備
不同形狀的三角形,量角器
五、教學(xué)過程:
。ㄒ唬┕适聦(dǎo)入:
三角形家里的兄弟們?cè)诩依锍硞(gè)不停,鈍角三角形說:“我有一個(gè)角最大,我的三個(gè)角之和也是最大”,直角三角形說:“我一個(gè)角都90°,更何況我長(zhǎng)了三只腳,我肯定比你大”,等邊三角形說:“我三條邊都相等,我三個(gè)角的`度數(shù)之和也不比你直角三角形,鈍角三角形三角之和小呀。這家兄弟就這樣,你一言,我一語的吵的不可開交,直角三角形和鈍角三角剛要?jiǎng)邮执蚱饋頃r(shí),媽媽回來了。三角形媽媽很奇怪,急忙就問:怎么了孩子們?銳角三角形低著頭小聲說:媽媽,他們都說:他三個(gè)角之和比我大,是這樣的嗎?三角形媽媽哈哈大笑,我以為你們?cè)诔呈裁茨兀吭瓉硎沁@個(gè)問題,好了孩子們,要想知道你們?nèi)齻(gè)角之和到底是多少?今天我?guī)銈內(nèi)コ菂^(qū)二小四年級(jí)那里的小朋友今天就在學(xué)習(xí)這節(jié)課,兄弟們跟著媽媽一起今天也來到我們的教室。同學(xué)們一會(huì)兒學(xué)會(huì)了,把正確答案告訴這幾位兄弟,好嗎?
。ǘ┙虒W(xué)實(shí)施
。1)小組合作把準(zhǔn)備的三角形折下來,在拼一拼,看能拼成一個(gè)什么角?
(2)反饋結(jié)果。
。3)學(xué)生總結(jié)結(jié)果。
三角形的內(nèi)角和是180°。(課件展示三角形的內(nèi)角和是180度。)
。4)(課件出示學(xué)過的三角形)請(qǐng)幾位同學(xué)告訴三角形家里的兄弟們,他們的內(nèi)角和是多少?
(三)設(shè)疑。
根據(jù)三角形的內(nèi)角和是180°如果知道兩個(gè)角的度數(shù),就可以求出第三個(gè)角的度數(shù)。(課件出示)
在一個(gè)直角三角形中,∠C=30°,求∠A的度數(shù)?
。1)學(xué)生讀題,分析題意。
。2)嘗試做題。
。3)教師訂正書寫。(課件出示)
∠A=180°-90°-30°=60°
(四)做一做
1、在一個(gè)三角形中∠1=140°,∠3=25°.求∠2的度數(shù)?
2、我是小判官。(對(duì)的打√,錯(cuò)的打×)
、侔岩粋(gè)等腰三角形分成兩個(gè)完全一樣的小
三角形,每個(gè)小三角形的內(nèi)角和都是90度。
②直角三角形的兩個(gè)銳角和是90度。
、廴魏我粋(gè)三角形的內(nèi)角和都是180度。
、茆g角三角形的兩個(gè)銳角之和大于90度,直角三角形的兩個(gè)銳角之和正好等于90度
3、求下面各角的度數(shù)。(課件出示)
。ㄎ澹┱n堂作業(yè):
。1)三邊相等,求三個(gè)角的度數(shù)。
(2)等腰三角形,頂角是96°,求底角
。3)在一個(gè)直角三角形中,有個(gè)銳角是40°,求另一個(gè)角。
。2)我給我女兒買了一個(gè)等腰三角形的風(fēng)箏,他的一個(gè)底角是70°,它的頂角是多少度?
(六)智力大闖關(guān)
我的一個(gè)內(nèi)角是72°,是另一個(gè)內(nèi)角的4倍,我是一個(gè)什么三角形?
六、課堂小結(jié)。
三角形的內(nèi)角和是多少?
三角形的內(nèi)角和是180度。
七、作業(yè)布置。
P88頁9、10
附板書
三角形的內(nèi)角和是180°
《三角形的內(nèi)角和》教案14
【教學(xué)內(nèi)容】:
人教版九年義務(wù)教育小學(xué)數(shù)學(xué)四年級(jí)下冊(cè)第95頁內(nèi)容。
【教學(xué)目標(biāo)】:
1、掌握三角形內(nèi)角和定理,并能進(jìn)行簡(jiǎn)單的運(yùn)用。
2、在探討三角形內(nèi)角和的過程中,培養(yǎng)學(xué)生轉(zhuǎn)化的數(shù)學(xué)思想。
3、通過讓學(xué)生積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的好奇心和求知欲。讓學(xué)生切實(shí)感受到從動(dòng)手操作中,引發(fā)猜想,最后驗(yàn)證猜想得出結(jié)論。發(fā)展學(xué)生動(dòng)手操作、觀察比較和抽象概括的能力。
4、培養(yǎng)學(xué)生善于思考,勤于動(dòng)手、勇于探索并發(fā)現(xiàn)結(jié)論的學(xué)習(xí)方法,使他們經(jīng)歷數(shù)學(xué)知識(shí)的形成過程。
【教學(xué)重難點(diǎn)】:
1、引導(dǎo)學(xué)生探索規(guī)律是否具有一般性,用不同的三角形驗(yàn)證猜想,從而得出三角形內(nèi)角和為1800。通過做一做,應(yīng)用三角形內(nèi)角和求未知角的度數(shù)。
2、在研究?jī)?nèi)角和時(shí),培養(yǎng)學(xué)生轉(zhuǎn)化的思想,把未知的知識(shí)轉(zhuǎn)化為已知的知識(shí)來研究。
【教學(xué)流程】:
一、復(fù)習(xí)導(dǎo)入:
1、上一節(jié)課我們把三角形按角和邊進(jìn)行了分類,誰來說一說按角可分成哪幾類?
抽答,教師板書
2、前邊我們還學(xué)習(xí)了三角形的高,誰來畫一畫他們的高。
抽答:
3、銳角、鈍角三角形的高把他們分成了兩個(gè)直角三角形。一個(gè)三角形中可以有三個(gè)銳角,為什么只能有一個(gè)直角呢?你能畫出含有兩個(gè)直角的三角形嗎?畫一畫。
4、想一想為什么不能畫出含有兩個(gè)直角的三角形呢?你有什么猜想?
二、教授新知
1、三角形三個(gè)角含有某種關(guān)系,今天我們就一起來研究三角形的角,由于三角形的角都在其內(nèi)部,所以也叫內(nèi)角。
教師板書:三角形內(nèi)角。
(一)初次探索:
1、我們先選一類出來研究,你們想先選哪一類呢?(直角三角形,因?yàn)槠渲幸粋(gè)角已知為900,只需研究另外兩個(gè)角就行了。)
2、你們手上有熟悉的三角形嗎?(教師出示三角板)看,這是不是大家最熟悉的直角三角形,誰來說一說它們另外兩個(gè)角的度數(shù)?
抽答:教師板書
3、同學(xué)們,請(qǐng)仔細(xì)觀察這兩組數(shù)據(jù),你有什么發(fā)現(xiàn)?
抽答:
4、一個(gè)多150,一個(gè)少150,他們的和怎樣?再加上它們都有一個(gè)900角,它們內(nèi)角和都為1800。大家想一想,是不是所有的.直角三角形三內(nèi)角和都為1800?驗(yàn)證一下,你手里的直角三角形,是這樣嗎?
5、你是怎樣驗(yàn)證的?結(jié)果怎樣?(量的)抽答:教師并板書
6、你也是量的?量出的結(jié)果是?
抽答:
7、這么多小朋友都是量的,可是量出的結(jié)果不全是1800,為什么和我們的猜想不一樣呢?因?yàn)榱坑幸欢ǖ恼`差,如果拋開誤差,你覺得它的內(nèi)角和是多少?1800是一個(gè)什么樣角?你能把這三個(gè)角組成一個(gè)平角嗎?怎么做?
抽答:
8、怎么拼的?給大家展示展示。
9、這說明直角三角形內(nèi)角和為1800。(板書:三內(nèi)角和=1800)
。ǘ┰俅翁剿
1、接下來該研究銳角和鈍角三角形了,請(qǐng)大家自行選擇一類來進(jìn)行研究。待會(huì)和大家分享你的研究成果。
2、你研究的哪一類三角形?用了什么方法?結(jié)果怎樣?(讓學(xué)生上黑板演示:量和拼的方法。)
抽答:
3、把你手里的銳角三角形向大家展示展示,形狀大小一樣嗎?(不一樣)你能得出什么結(jié)論?(銳角三角形內(nèi)角和=1800)教師板書。
。ㄈ┻\(yùn)用轉(zhuǎn)化的方法:
1、還有其他的方法嗎?老師給大家介紹另一種方法,轉(zhuǎn)化的方法。銳角三角形的一條高把它分為兩個(gè)直角三角形,一個(gè)直角三角形內(nèi)角和為1800,兩個(gè)直角三角形內(nèi)角和就是3600,這個(gè)結(jié)論是不是錯(cuò)了呀?
2、你發(fā)現(xiàn)問題了,你來說說。
抽答:
3、誰研究的鈍角三角形?說說你是怎么研究的?結(jié)果怎樣?
抽答:
4、把你的鈍角三角形向大家展示展示,形狀大小一樣嗎?(不一樣)你能得出什么結(jié)論?(鈍角三角形內(nèi)角和為1800)教師板書。
5、研究了直角、銳角、鈍角三角形,它們內(nèi)角和都為1800,你能得出什么結(jié)論?(所有三角形內(nèi)角和都為1800)
齊答:教師并板書。
。ㄋ模┰O(shè)疑,自行研究
1、看看這個(gè)課題,你還有什么疑問嗎?老師有一個(gè)疑問,你能解答嗎?這里有一個(gè)這么大的三角形,還有一個(gè)這么小的三角形,相差這么大,內(nèi)角和能一樣嗎?
抽答:
2、說明角的大小和邊長(zhǎng)是沒有關(guān)系的。所有的三角形的內(nèi)角和都為1800。
三、課堂練習(xí)
1、學(xué)習(xí)了三角形內(nèi)角和,如果已知其中兩個(gè)角,你能求出第三個(gè)角的度數(shù)嗎?請(qǐng)做一做練習(xí)一。(在一個(gè)三角形中,∠1=1400,∠2=250,求∠3的度數(shù)。)
2、一個(gè)直角三角形已知其中一個(gè)非直角,你能求出另一個(gè)角的度數(shù)嗎?做一做練習(xí)二。(在一個(gè)直角三角形中,其中一個(gè)角為400,求另一個(gè)角的度數(shù)。)
3、一個(gè)等腰三角形已知其中一個(gè)底角,其他角的度數(shù)你還能求嗎?看看練習(xí)三。(一個(gè)等腰三角形,已知底角為420,求另外兩個(gè)角的度數(shù)。)
四、課堂小結(jié)
1、這節(jié)課你學(xué)了什么新知識(shí)?
2、我們是怎么研究的?(從大家熟悉的開始研究,從特殊到一般并運(yùn)用了轉(zhuǎn)化的思想。)
五、知識(shí)拓展
1、研究了三角形內(nèi)角和,四邊形呢?你還能求嗎?你想怎么做?能用轉(zhuǎn)化的方法嗎?怎么做?
抽答:
六、總結(jié):
這節(jié)課我們學(xué)習(xí)新知識(shí)時(shí),用了很多方法,希望大家在以后的學(xué)習(xí)中
想出更多的方法。在學(xué)了課本知識(shí)的基礎(chǔ)上還拓展了相關(guān)知識(shí),希望大家在以后的學(xué)習(xí)中再接再厲。
以下附上教材封面及教材內(nèi)容:
《三角形的內(nèi)角和》教案15
教學(xué)目標(biāo)
知識(shí)與能力:學(xué)生通過測(cè)量、撕拼的方法探索和發(fā)現(xiàn)三角形三個(gè)內(nèi)角和是180°。
過程與方法:學(xué)生經(jīng)歷合理猜想和驗(yàn)證三角形內(nèi)角度數(shù)和等于180°的過程,發(fā)展空間觀念及分析推理能力。
情感態(tài)度和價(jià)值觀:學(xué)生在活動(dòng)中體驗(yàn)成功的喜悅,激發(fā)學(xué)生探索數(shù)學(xué)的愿望和興趣。
重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn):
探究發(fā)現(xiàn)三角形的內(nèi)角和是180度。
教學(xué)難點(diǎn):
在猜想和驗(yàn)證三角形內(nèi)角和的過程中發(fā)展空間觀念。
教學(xué)過程
活動(dòng)1【導(dǎo)入】理解內(nèi)角、內(nèi)角和概念
。、謎語引入:形狀似座山,穩(wěn)定性能堅(jiān),三竿首尾連,學(xué)問不簡(jiǎn)單,打一幾何圖形猜一猜是什么?
Q:結(jié)合謎面的信息來說一說三角形有什么特點(diǎn)?
2、介紹內(nèi)角:這三個(gè)角都在三角形的里面,又叫內(nèi)角。
Q:三角形有幾個(gè)內(nèi)角?
3、介紹內(nèi)角和:把三個(gè)內(nèi)角的度數(shù)加起來求和就是三角形的內(nèi)角和。
引出課題:今天我們就來研究三角形內(nèi)角和。
活動(dòng)2【活動(dòng)】觀察圖形
。薄⒂^察圖形的變與不變
。穑穑粢来纬鍪
Q:這是銳角三角形,什么是它的內(nèi)角和?
出示直角三角形,它的內(nèi)角和是指?
出示鈍角三角形,內(nèi)角和是指?
質(zhì)疑:哪個(gè)三角形的內(nèi)角和最大?
預(yù)設(shè)1:鈍角三角形內(nèi)角和大。(說想法)
預(yù)設(shè)2:一樣大。(說想法)
預(yù)設(shè)3:180度。
小結(jié):三個(gè)三角形的樣子不一樣,大小也不一樣,三個(gè)內(nèi)角也不一樣,但內(nèi)角和是一樣的。
(二)活動(dòng)二:猜想內(nèi)角和不變的度數(shù)
Q:這個(gè)一樣的度數(shù)是多少?你是怎么知道的?
預(yù)設(shè)1:聽說過,學(xué)過。
預(yù)設(shè)2:直角三角尺上三個(gè)角的度數(shù)和是180度。
預(yù)設(shè)3:等邊三角形。
這兩個(gè)都是我們知道度數(shù)的特殊的三角形,請(qǐng)你根據(jù)這個(gè)特殊的三角形來大膽的猜猜三角形內(nèi)角和是多少度?那任意的`一個(gè)三角形的內(nèi)角和度數(shù)是不是180°呢?今天我們就來一起研究。
活動(dòng)3【活動(dòng)】測(cè)量驗(yàn)證
(一)思考量的方法和原因
過渡:你想怎么研究?(用量角器去量)
Q:誰來介紹介紹量的方法?
預(yù)設(shè):要想研究?jī)?nèi)角和,只要把三個(gè)內(nèi)角度數(shù)量出來再加起來看看是不是180度就可以了。
(二)動(dòng)手測(cè)量
PPT:操作建議:
1、請(qǐng)你找到三角形的三個(gè)內(nèi)角,用彩筆標(biāo)序號(hào)1、2、3。
2、用量角器仔細(xì)測(cè)量后,記錄角的度數(shù)。
3、列式計(jì)算出三角形內(nèi)角和度數(shù)。
動(dòng)手測(cè)量
。ㄈ﹨R報(bào)交流:
學(xué)生1展示測(cè)量的過程。
Q:還有誰測(cè)量的這個(gè)銳角三角形,說一說?
追問:為什么同一個(gè)三角形內(nèi)角和度數(shù)卻不一樣?
Q:你在測(cè)量的過程中遇到了什么困難?
Q:觀察這些數(shù)據(jù),雖然都不太一樣,但是都很接近?
小結(jié):測(cè)量確實(shí)可以幫助我們找到三個(gè)角的度數(shù),加起來就可以求出內(nèi)角和,但是測(cè)量有誤差。
活動(dòng)4【活動(dòng)】拼角驗(yàn)證
(一)思考其它驗(yàn)證方法
Q:你還有其他的方法嗎?
預(yù)設(shè)1:學(xué)生沒有反應(yīng)。
師引導(dǎo):說到180度,你想到什么角?(平角)
預(yù)設(shè)2:撕拼法
Q:怎么把三個(gè)內(nèi)角拼在一起?
。ㄉ凰,教師幫助突破,撕下三個(gè)內(nèi)角。)
Q:你能在投影上拼一拼嗎?
預(yù)設(shè)3:折疊法
你的方法也很好,你們聽懂了嗎?一會(huì)兒可以試試。
預(yù)設(shè)4:描畫法
Q:怎么描?你能演示一下嗎?
其他同學(xué)觀察他在做什么?
引語:剛才說的方法都很好,下面我們自己來試一試。
。ǘ﹦(dòng)手拼一拼
操作要求:
1、請(qǐng)你用彩筆在紙上隨意畫一個(gè)三角形,并剪下來。
2、用彩筆標(biāo)出三個(gè)內(nèi)角。
3、嘗試操作。
動(dòng)手操作
。ㄈ﹨R報(bào)交流
Q:你是怎么研究的?發(fā)現(xiàn)了什么?
。ㄋ模┬〗Y(jié)
剛才每人的三角形是自己任意畫出的,形狀、大小都不一樣。無論是撕拼、折疊、還是描畫的方法,都是在把這三個(gè)內(nèi)角拼在了一起,轉(zhuǎn)化成一個(gè)平角,我們發(fā)現(xiàn)他們的內(nèi)角和都是180度。
活動(dòng)5【活動(dòng)】幾何畫板驗(yàn)證
引:但我們時(shí)間有限,研究的三角形個(gè)數(shù)有限,是不是任意一個(gè)三角形的內(nèi)角和都是180度呢?我們可以借助幾何畫板來看一看。
師:介紹:計(jì)算機(jī)能夠幫助我們比較精確地測(cè)量出三個(gè)角的度數(shù),并計(jì)算它們的和。
觀察:老師拉動(dòng)一個(gè)頂點(diǎn),什么變了?什么沒變?
小結(jié):也就是,無論我們?cè)趺锤淖內(nèi)切蔚男螤,大小,雖然它的內(nèi)角在變化,但三個(gè)內(nèi)角和的卻是不變的,都是180度。
活動(dòng)6【練習(xí)】基礎(chǔ)練習(xí)
1、三角形中∠1=55°,∠2=45°,∠3=?
2、直角三角形:我有一個(gè)銳角是40°,求另一個(gè)角?
3、說一說:在一個(gè)三角形中,能有兩個(gè)直角嗎?能有兩個(gè)鈍角嗎?為什么?
4、拼三角形
師:兩個(gè)180°不是360°嗎?
小結(jié):看來,組合以后的圖形還要分清楚哪些是內(nèi)角。
活動(dòng)7【練習(xí)】拓展練習(xí)
。ㄒ唬┩卣咕毩(xí)
今天,我們通過自己的研究發(fā)現(xiàn)三角形內(nèi)角和是180度。那四邊形有沒有內(nèi)角和呢?它的內(nèi)角和是多少度?
課件演示。
說說這節(jié)課你的收獲?
【《三角形的內(nèi)角和》教案】相關(guān)文章:
三角形內(nèi)角和教案02-02
三角形內(nèi)角和教案八篇05-12
精選三角形內(nèi)角和教案三篇05-15
【精華】三角形內(nèi)角和教案四篇05-15
【熱門】三角形內(nèi)角和教案三篇05-15
三角形內(nèi)角和定理證明教案05-08
三角形內(nèi)角和教案15篇(薦)03-25
《三角形內(nèi)角和》說課稿12-06
三角形的內(nèi)角和說課稿07-09