- 相關(guān)推薦
初中數(shù)學(xué)圓教案
作為一位無私奉獻(xiàn)的人民教師,往往需要進(jìn)行教案編寫工作,編寫教案有利于我們科學(xué)、合理地支配課堂時(shí)間。那么應(yīng)當(dāng)如何寫教案呢?下面是小編精心整理的初中數(shù)學(xué)圓教案,僅供參考,歡迎大家閱讀。
初中數(shù)學(xué)圓教案1
公開課教案
授課時(shí)間: 20xx.11.17早上第二節(jié) 授課班級(jí):初三、1班 授課教師:
教學(xué)內(nèi)容: 7.7 直線和圓的位置關(guān)系
教學(xué)目標(biāo):
知識(shí)與技能目標(biāo):1、理解直線和圓相交、相切、相離的概念。
2. 初步掌握直線和圓的位置關(guān)系的性質(zhì)和判定及其靈活的應(yīng)用。
過程與方法目標(biāo):1.通過直線和圓的位置關(guān)系的探究,向?qū)W生滲透分類、數(shù)形結(jié)合的思
想,培養(yǎng)學(xué)生觀察、分析、概括、知識(shí)遷移的能力;
2. 通過例題教學(xué),培養(yǎng)學(xué)生靈活運(yùn)用知識(shí)的解決能力。
情感與態(tài)度目標(biāo):讓學(xué)生從運(yùn)動(dòng)的觀點(diǎn)來觀察直線和圓相交、相切、相離的關(guān)系、關(guān)注知識(shí)的生成,發(fā)展與變化的過程,主動(dòng)探索,勇于發(fā)現(xiàn)。從而領(lǐng)悟世界上的'一切物體都是運(yùn)動(dòng)變化著的,并且在一定的條件下可以轉(zhuǎn)化的辯證唯物主義觀點(diǎn)。
[1][2][3][4][5][6][7][8][9][10] ... 下一頁 >>
初中數(shù)學(xué)圓教案2
教學(xué)內(nèi)容
24。2圓的切線(1)
教學(xué)目標(biāo) 使學(xué)生掌握切線的識(shí)別方法,并能初步運(yùn)用它解決有關(guān)問題
通過切線識(shí)別方法的學(xué)習(xí),培養(yǎng)學(xué)生觀察、分析、歸納問題的能力
教學(xué)重點(diǎn) 切線的識(shí)別方法
教學(xué)難點(diǎn) 方法的理解及實(shí)際運(yùn)用
教具準(zhǔn)備 投影儀,膠片
教學(xué)過程 教師活動(dòng) 學(xué)生活動(dòng)
。ㄒ唬⿵(fù)習(xí) 情境導(dǎo)入
1、復(fù)習(xí)、回顧直線與圓的三 種位置關(guān)系。
2、請(qǐng)學(xué)生判斷直線和圓的位置關(guān)系。
學(xué)生判斷的過程,提問:你是怎樣判斷出圖中的直線和圓相切的?根據(jù)學(xué)生的回答,繼續(xù)提出 問題:如何界定直線與圓是否只有一個(gè)公共點(diǎn)?教師指出,根據(jù)切線的定義可以識(shí)別一條直線是不是圓的切線,但有時(shí)使用定義識(shí)別很不方便,為此我們還要學(xué)習(xí)識(shí)別切 線的其它方法。(板書課題) 搶答
學(xué)生總結(jié)判別方法
。ǘ
實(shí)踐與探索1:圓的切線的判斷方法 1、由上面 的復(fù)習(xí),我們可以把上節(jié)課所學(xué)的切線的定義作為識(shí)別切線的方法1——定義法:與圓只有一個(gè)公共點(diǎn)的直線是圓的切線。
2、當(dāng)然,我們還可以由上節(jié)課所學(xué)的用圓心到直線的距離 與半徑 之間的關(guān)系來判斷直線與圓是否相切,即:當(dāng) 時(shí),直線與圓的位置關(guān)系是相切。以此作為識(shí)別切線的方法2——數(shù)量關(guān)系法:圓心到直線的距離等于半徑的直線是圓的切線 。
3、實(shí)驗(yàn):作⊙O的.半徑OA,過A作l⊥OA可以發(fā)現(xiàn):
。1)直線 經(jīng)過半徑 的外端點(diǎn) ;
。2)直線 垂直于半徑 。這樣我們就得到了從位 置上來判斷直線是圓的切線的方法3——位置關(guān)系法:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線。 理解并識(shí)記圓的切線的幾種方法,并比較應(yīng)用。
通過實(shí)驗(yàn)探究圓的切線的位置判別方法,深入理解它的兩個(gè)要義。
三、課堂練習(xí)
思考:現(xiàn)在,任意給定一個(gè)圓,你能不能作出圓的切線?應(yīng)該如何作?
請(qǐng)學(xué)生回顧作圖過程,切線 是如何作出來的?它滿足哪些條件? 引導(dǎo)學(xué)生總結(jié)出:①經(jīng)過半徑外端;②垂直于這條半徑。
請(qǐng)學(xué)生繼續(xù)思考:這兩個(gè)條件缺少一個(gè)行不行? (學(xué)生畫出反例圖)
。▓D1) (圖2) 圖(3)
圖(1)中直線 經(jīng)過半徑外端,但不與半徑垂直; 圖(2)中直線 與半徑垂直,但不經(jīng)過半徑外端。 從以上兩個(gè)反例可以看出,只滿足其中一個(gè)條件的直線不是圓的切線。
最后引導(dǎo)學(xué)生分析,方法3實(shí)際上是從前一節(jié)所講的“圓 心到直線的距離等于半徑時(shí)直線和圓相切”這個(gè)結(jié)論直接得出來的,只是為了便于應(yīng)用把它改寫成“經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線”這種形式。 試驗(yàn)體會(huì)圓的位置判別方法。
理解位置判別方法的兩個(gè)要素。
。ㄋ模⿷(yīng)用與拓展 例1、如圖,已知直線AB經(jīng)過⊙O上的點(diǎn)A,并且AB=OA,OBA=45,直線AB是⊙O的切線嗎?為什么?
例2、如圖,線段AB經(jīng)過圓心O,交⊙O于點(diǎn)A、C,BAD=B=30,邊BD交圓于點(diǎn)D。BD是⊙ O的切線嗎?為什么?
分析:欲證BD是⊙O的切線,由于BD過圓上點(diǎn)D,若連結(jié)OD,則BD過半徑OD的外端,因此只需證明BD⊥OD,因OA=OD,BAD=B,易證BD⊥OD。
教師板演,給出解答過程及格式。
課堂練習(xí):課本練習(xí)1-4 先選擇方法,弄清位置判別方法與數(shù)量判別方法的本質(zhì)區(qū)別。
注意圓的切線的特征與識(shí)別的區(qū)別。
。ㄋ模┬〗Y(jié)與作業(yè) 識(shí) 別一條直線是圓的切線,有 三種方法:
(1)根據(jù)切線定義判定,即與圓只有一個(gè)公共點(diǎn)的直線是圓的切線;
。2)根據(jù)圓心到直線的距離來判定,即與圓心的距離等于圓的半徑的直線是圓的切線;
。3)根據(jù)直線的位置關(guān)系來判定,即經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的 切線,
說明一條直線是圓的切線,常常需要作輔助線,如果 已知直線過圓上某 一點(diǎn),則作出過 這一點(diǎn)的半徑,證明直線垂直于半徑即可(如例2)。
各抒己見,談收獲。
(五)板書設(shè)計(jì)
識(shí)別一條直線是圓的切線,有三種方法: 例:
。1 )根據(jù)切線定義判定,即與圓只有一個(gè)公共點(diǎn)的直線是圓的切線;
。2)根據(jù)圓心到直線的距離來判定,即與圓心的距離等于圓的半徑的直線是圓 的切線;
。3)根據(jù)直線的位置關(guān)系來判定,即經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的 切線,
說明一條直線是圓的切線,常常需要作輔助線,如果已知直線過圓上某一點(diǎn),則作出過 這一點(diǎn)的半徑,證明 直線垂直于半徑
。┙虒W(xué)后記
教學(xué)內(nèi)容 24。2圓的切線(2) 課型 新授課 課時(shí) 執(zhí)教
教學(xué)目標(biāo) 通過探究,使學(xué)生發(fā)現(xiàn)、掌握切線長(zhǎng)定理,并初步長(zhǎng)定理,并初步學(xué)會(huì)應(yīng)用切線長(zhǎng)定理解決問題,同時(shí)通過從三角形紙片中剪出最大圓的實(shí)驗(yàn)的過程中發(fā)現(xiàn)三角形內(nèi)切圓的畫法,能用內(nèi)心的性質(zhì)解決問題。
教學(xué)重點(diǎn) 切線長(zhǎng)定理及其應(yīng)用,三角形的內(nèi)切圓的畫法和內(nèi)心的性質(zhì)。
教學(xué)難點(diǎn) 三角形的內(nèi)心及其半徑的確定。
教具準(zhǔn)備 投影儀,膠片
教學(xué)過程 教師 活動(dòng) 學(xué)生活動(dòng)
。ㄒ唬⿵(fù)習(xí)導(dǎo)入:
請(qǐng)同學(xué)們回顧一下,如何判斷一條直線是圓的切線?圓的切線具有什么性質(zhì)?(經(jīng)過半徑外端且垂直于這條半徑的直線是圓的切線;圓的切線垂直于經(jīng)過切點(diǎn)的半徑。)
你能說明以下這個(gè)問題?
如右圖所示,PA是 的平分線,AB是⊙O的切線,切點(diǎn)E,那么AC是⊙O的切線嗎?為什么?
回顧舊知,看誰說的全。
利用舊知,分析解決該問題。
(二)
實(shí)踐與探索 問題1、從圓外一點(diǎn)可以作圓的幾條切線?請(qǐng)同學(xué)們畫一畫。
2、請(qǐng)問:這一點(diǎn) 與切點(diǎn)的 兩條線段的長(zhǎng)度相等嗎?為什么?
3、切線長(zhǎng)的定義是什么?
通過以 上幾個(gè)問題的解決,使同學(xué)們得出以下的結(jié)論:
從圓外一點(diǎn)可以引圓的兩條切線,切線長(zhǎng)相等。這一點(diǎn)與圓心的連線
平分兩條切線的夾角。 在解決以上問題時(shí),鼓勵(lì)同學(xué)們用不同的觀點(diǎn)、不同的知識(shí)來解決問題,它既可以用書上闡述的對(duì)稱的觀點(diǎn)解決,也可以用以前學(xué)習(xí)的其他知識(shí)來解決問題。
。ㄈ┩卣古c應(yīng)用 例:右圖,PA、PB是,切點(diǎn)分別是A、B,直線EF也是⊙O的切線,切點(diǎn)為P,交PA、PB為E、F點(diǎn),已知 , ,(1)求 的周長(zhǎng);(2)求 的度數(shù)。
解:(1)連結(jié)PA、PB、EF是⊙O的切線
所以 , ,
所以 的周長(zhǎng) (2)因?yàn)镻A、PB、EF是⊙O的切線
所以 , ,,
所以
所以
畫圖分析探究,教學(xué)中應(yīng)注重基本圖形的教學(xué),引導(dǎo)學(xué)生發(fā)現(xiàn)基本圖形,應(yīng)用基本圖形解決問題。
(四)小結(jié)與作業(yè) 談一下本節(jié)課的 收獲 ? 各抒己見,看誰 說得最好
。ㄎ澹┌鍟O(shè)計(jì)
切線(2)
切線長(zhǎng)相等 例:
切線長(zhǎng)性質(zhì)
點(diǎn)與圓心連 線平分兩切線夾角
(六)教學(xué)后記
初中數(shù)學(xué)圓教案3
教學(xué)目標(biāo)
1, 整理前兩個(gè)學(xué)段學(xué)過的整數(shù)、分?jǐn)?shù)(包括小數(shù))的知識(shí),掌握正數(shù)和負(fù)數(shù)的概念;
2, 能區(qū)分兩種不同意義的量,會(huì)用符號(hào)表示正數(shù)和負(fù)數(shù);
3, 體驗(yàn)數(shù)學(xué)發(fā)展的一個(gè)重要原因是生活實(shí)際的需要,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)難點(diǎn) 正確區(qū)分兩種不同意義的量。
知識(shí)重點(diǎn) 兩種相反意義的量
教學(xué)過程
。◣熒顒(dòng)) 設(shè)計(jì)理念
設(shè)置情境
引入課題 上課開始時(shí),教師應(yīng)通過具體的例子,簡(jiǎn)要說明在前兩個(gè)學(xué)段我們已經(jīng)學(xué)過的數(shù),并由此請(qǐng)學(xué)生思考:生
活中僅有這些“以前學(xué)過的數(shù)”夠用了嗎?下面的例子僅供參考。
師:今天我們已經(jīng)是七年級(jí)的學(xué)生了,我是你們的數(shù)學(xué)老師。下面我先向你們做一下自我介紹,我的名字是xx,身高1.73米,體重58.5千克,今年40歲。我們的班級(jí)是七(13)班,有60個(gè)同學(xué),其中男同學(xué)有22個(gè),占全班總?cè)藬?shù)的37%…
問題1:老師剛才的介紹中出現(xiàn)了幾個(gè)數(shù)?分別是什么?你能將這些數(shù)按以前學(xué)過的數(shù)的分類方法進(jìn)行分類嗎?
學(xué)生活動(dòng):思考,交流
師:以前學(xué)過的數(shù),實(shí)際上主要有兩大類,分別是整數(shù)和分?jǐn)?shù)(包括小數(shù))。
問題2:在生活中,僅有整數(shù)和分?jǐn)?shù)夠用了嗎?
請(qǐng)同學(xué)們看書(觀察本節(jié)前面的幾幅圖中用到了什么數(shù),讓學(xué)生感受引入負(fù)數(shù)的必要性)并思考討論,然后進(jìn)行交流。
。ㄒ部梢猿鍪練庀箢A(yù)報(bào)中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)
學(xué)生交流后,教師歸納:以前學(xué)過的數(shù)已經(jīng)不夠用了,有時(shí)候需要一種前面帶有“-”的新數(shù)。 先回顧小學(xué)里學(xué)過的數(shù)的類型,歸納出我們已經(jīng)學(xué)了整數(shù)和分?jǐn)?shù),然后,舉一些實(shí)際生活中·共有相反意義的量,說明為了表示相反意義的量,我們需要引入負(fù)數(shù),這樣做強(qiáng)調(diào)了數(shù)學(xué)的嚴(yán)密性,但對(duì)于學(xué)生來說,更多地感到了數(shù)學(xué)的枯燥乏味為了既復(fù)習(xí)小學(xué)里學(xué)過的數(shù),又能激發(fā)學(xué)生的學(xué)習(xí)興趣,所以創(chuàng)設(shè)如下的問題情境,以盡量貼近學(xué)生的實(shí)際。這個(gè)問題能激發(fā)學(xué)生探究的欲望,學(xué)生自己看書學(xué)習(xí)是培養(yǎng)學(xué)生自主學(xué)習(xí)的重要途徑,都應(yīng)予以重視。
以上的情境和實(shí)例使學(xué)生體會(huì)生活中處處有數(shù)學(xué),通過實(shí)例,使學(xué)生獲取大量的感性材料,為正確建立相反意義的量奠定基礎(chǔ)。
分析問題
探究新知 問題3:前面帶有“一”號(hào)的新數(shù)我們應(yīng)怎樣命名它呢?為什么要引人負(fù)數(shù)呢?通常在日常生活中我們用正數(shù)和負(fù)數(shù)分別表示怎樣的量呢?
這些問題都必須要求學(xué)生理解。
教師可以用多媒體出示這些問題,讓學(xué)生帶著這些問題看書自學(xué),然后師生交流。
這階段主要是讓學(xué)生學(xué)會(huì)正數(shù)和負(fù)數(shù)的表示。
強(qiáng)調(diào):用正,負(fù)數(shù)表示實(shí)際問題中具有相反意義的量,而相反意義的量包含兩個(gè)要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數(shù)量,而且是同類的量。 這些問題是這節(jié)課的主要知識(shí),教師要清楚地向?qū)W生說明,并且要注意語言的準(zhǔn)確與規(guī)范,要舍得花時(shí)間讓學(xué)充分發(fā)表想法。
舉一反三思維拓展 經(jīng)過上面的討論交流,學(xué)生對(duì)為什么要引人負(fù)數(shù),對(duì)怎樣用正數(shù)和負(fù)數(shù)表示兩種相反意義的量有了初步的理解,教師可以要求學(xué)生舉出實(shí)際生活中類似的例子,以加深對(duì)正數(shù)和負(fù)數(shù)概念的理解,并開拓思維。
問題4:請(qǐng)同學(xué)們舉出用正數(shù)和負(fù)數(shù)表示的`例子。
問題5:你是怎樣理解“正整數(shù)”“負(fù)整數(shù),’正分?jǐn)?shù)”和“負(fù)分?jǐn)?shù)”的呢?請(qǐng)舉例說明。
能否舉出例子是學(xué)生對(duì)知識(shí)掌握程度的體現(xiàn),也能進(jìn)一步幫助學(xué)生理解引負(fù)數(shù)的必要性
課堂練習(xí) 教科書第5頁練習(xí)
小結(jié)與作業(yè)
課堂小結(jié)
圍繞下面兩點(diǎn),以師生共同交流的方式進(jìn)行:
1, 0由于實(shí)際問題中存在著相反意義的量,所以要引人負(fù)數(shù),這樣數(shù)的范圍就擴(kuò)大了;
2,正數(shù)就是以前學(xué)過的0以外的數(shù)(或在其前面加“+”),負(fù)數(shù)就是在以前學(xué)過的0以外的數(shù)前面加“-”。
本課作業(yè) 教科書第7頁習(xí)題1.1 第1,2,4,5(第3題作為下節(jié)課的思考題。
作業(yè)可設(shè)必做題和選 做題,體現(xiàn)要求的層次性,以滿足不同學(xué)生的需要
本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)
密切聯(lián)系生活實(shí)際,創(chuàng)設(shè)學(xué)習(xí)情境。本課是有理數(shù)的第一節(jié)課時(shí)。引人負(fù)數(shù)是數(shù)的范圍的一次重要擴(kuò)充,學(xué)生頭腦中關(guān)于數(shù)的結(jié)構(gòu)要做重大調(diào)整(其實(shí)是一次知識(shí)的順應(yīng)過程),而負(fù)數(shù)相對(duì)于以前的數(shù),對(duì)學(xué)生來說顯得更抽象,因此,這個(gè)概念并不是一下就能建立的。為了接受這個(gè)新的數(shù),就必須對(duì)原有的數(shù)的結(jié)構(gòu)進(jìn)行整理,引人幣的舉例就是這個(gè)目的。
負(fù)數(shù)的產(chǎn)生主要是因?yàn)樵械臄?shù)不夠用了(不能正確簡(jiǎn)潔地表示數(shù)量),書本的例子或圖片中出現(xiàn)的的負(fù)數(shù)就是讓學(xué)生去感受和體驗(yàn)這一點(diǎn)。使學(xué)生接受生活生產(chǎn)實(shí)際中確實(shí)存在著兩種相反意義的量是本課的教學(xué)難點(diǎn),所以在教學(xué)中可以多舉幾個(gè)這方面的例子,并且所舉的例子又應(yīng)該符合學(xué)生的年齡和思維特點(diǎn)。當(dāng)學(xué)生接受了這個(gè)事實(shí)后,引入負(fù)數(shù)(為了區(qū)分這兩種相反意義的量)就是順理成章的事了。
這個(gè)教學(xué)設(shè)計(jì)突出了數(shù)學(xué)與實(shí)際生活的緊密聯(lián)系,使學(xué)生體會(huì)到數(shù)學(xué)的應(yīng)用價(jià)值,體現(xiàn)了學(xué)生自主學(xué)習(xí)、合作交流的教學(xué)理念,書本中的圖片和例子都是生活生產(chǎn)中常見的事實(shí),學(xué)生容易接受,所以應(yīng)該讓學(xué)生自己看書、學(xué)習(xí),并且鼓勵(lì)學(xué)生討論交流,教師作適當(dāng)引導(dǎo)就可以了。
初中數(shù)學(xué)圓教案4
教學(xué)目標(biāo):
。1)理解圓周角的概念,掌握?qǐng)A周角的兩個(gè)特征、定理的內(nèi)容及簡(jiǎn)單應(yīng)用;
。2)繼續(xù)培養(yǎng)學(xué)生觀察、分析、想象、歸納和邏輯推理的能力;
。3)滲透由“特殊到一般”,由“一般到特殊”的數(shù)學(xué)思想方法.
教學(xué)重點(diǎn):
圓周角的概念和圓周角定理
教學(xué)難點(diǎn):
圓周角定理的證明中由“一般到特殊”的數(shù)學(xué)思想方法和完全歸納法的數(shù)學(xué)思想.
教學(xué)活動(dòng)設(shè)計(jì):
。ㄔ诮處熤笇(dǎo)下完成)
。ㄒ唬﹫A周角的概念
1、復(fù)習(xí)提問:
。1)什么是圓心角?
答:頂點(diǎn)在圓心的角叫圓心角.
。2)圓心角的度數(shù)定理是什么?
答:圓心角的度數(shù)等于它所對(duì)弧的度數(shù).(如右圖)
2、引題圓周角:
如果頂點(diǎn)不在圓心而在圓上,則得到如左圖的新的角∠ACB,它就是圓周角.(如右圖)(演示圖形,提出圓周角的定義)
定義:頂點(diǎn)在圓周上,并且兩邊都和圓相交的角叫做圓周角
3、概念辨析:
教材P93中1題:判斷下列各圖形中的是不是圓周角,并說明理由.
學(xué)生歸納:一個(gè)角是圓周角的條件:①頂點(diǎn)在圓上;②兩邊都和圓相交.
。ǘ﹫A周角的定理
1、提出圓周角的度數(shù)問題
問題:圓周角的度數(shù)與什么有關(guān)系?
經(jīng)過電腦演示圖形,讓學(xué)生觀察圖形、分析圓周角與圓心角,猜想它們有無關(guān)系.引導(dǎo)學(xué)生在建立關(guān)系時(shí)注意弧所對(duì)的圓周角的三種情況:圓心在圓周角的一邊上、圓心在圓周角內(nèi)部、圓心在圓周角外部.
(在教師引導(dǎo)下完成)
。1)當(dāng)圓心在圓周角的一邊上時(shí),圓周角與相應(yīng)的圓心角的關(guān)系:(演示圖形)觀察得知圓心在圓周角上時(shí),圓周角是圓心角的一半.
提出必須用嚴(yán)格的數(shù)學(xué)方法去證明.
證明: (圓心在圓周角上)
。2)其它情況,圓周角與相應(yīng)圓心角的關(guān)系:
當(dāng)圓心在圓周角外部時(shí)(或在圓周角內(nèi)部時(shí))引導(dǎo)學(xué)生作輔助線將問題轉(zhuǎn)化成圓心在圓周角一邊上的情況,從而運(yùn)用前面的結(jié)論,得出這時(shí)圓周角仍然等于相應(yīng)的圓心角的結(jié)論.
證明:作出過C的直徑(略)
圓周角定理: 一條弧所對(duì)的
周角等于它所對(duì)圓心角的一半.
說明:這個(gè)定理的證明我們分成三種情況.這體現(xiàn)了數(shù)學(xué)中的分類方法;在證明中,后兩種都化成了第一種情況,這體現(xiàn)數(shù)學(xué)中的化歸思想.(對(duì)A層學(xué)生滲透完全歸納法)
。ㄈ┒ɡ淼膽(yīng)用
1 、例題:如圖?? OA、OB、OC都是圓O的半徑,∠AOB=2∠BOC.
求證:∠ACB=2∠BAC
讓學(xué)生自主分析、解得,教師規(guī)范推理過程.
說明:①推理要嚴(yán)密;②符號(hào)“”應(yīng)用要嚴(yán)格,教師要講清.
2、鞏固練習(xí):
(1)如圖,已知圓心角∠AOB=100°,求圓周角∠ACB、∠ADB的度數(shù)?
。2)一條弦分圓為1:4兩部分,求這弦所對(duì)的圓周角的'度數(shù)?
說明:一條弧所對(duì)的圓周角有無數(shù)多個(gè),卻這條弧所對(duì)的圓周角的度數(shù)只有一個(gè),但一條弦所對(duì)的圓周角的度數(shù)只有兩個(gè).
。ㄋ模┛偨Y(jié)
知識(shí):(1)圓周角定義及其兩個(gè)特征;(2)圓周角定理的內(nèi)容.
思想方法:一種方法和一種思想:
在證明中,運(yùn)用了數(shù)學(xué)中的分類方法和“化歸”思想.分類時(shí)應(yīng)作到不重不漏;化歸思想是將復(fù)雜的問題轉(zhuǎn)化成一系列的簡(jiǎn)單問題或已證問題.
。ㄎ澹┳鳂I(yè)教材P100中習(xí)題A組6,7,8
第二、三課時(shí)圓周角(二、三)
教學(xué)目標(biāo):
。1)掌握?qǐng)A周角定理的三個(gè)推論,并會(huì)熟練運(yùn)用這些知識(shí)進(jìn)行有關(guān)的計(jì)算和證明;
。2)進(jìn)一步培養(yǎng)學(xué)生觀察、分析及解決問題的能力及邏輯推理能力;
(3)培養(yǎng)添加輔助線的能力和思維的廣闊性.
教學(xué)重點(diǎn):圓周角定理的三個(gè)推論的應(yīng)用.
教學(xué)難點(diǎn):三個(gè)推論的靈活應(yīng)用以及輔助線的添加.
教學(xué)活動(dòng)設(shè)計(jì):
。ㄒ唬﹦(chuàng)設(shè)學(xué)習(xí)情境
問題1 :畫一個(gè)圓,以B、C為弧的端點(diǎn)能畫多少個(gè)圓周角?它們有什么關(guān)系?
問題2 :在⊙O中,若=,能否得到∠C=∠G呢?根據(jù)什么?反過來,若土∠C=∠G,是否得到=呢?
。ǘ┓治、研究、交流、歸納
讓學(xué)生分析、研究,并充分交流.
注意:①問題解決,只要構(gòu)造圓心角進(jìn)行過渡即可;②若=,則∠C=∠G;但反之不成立.
老師組織學(xué)生歸納:
推論1 :同弧或等弧所對(duì)的圓周角相等;在同圓或等圓中,相等的圓周角所對(duì)的弧也相等.
重視:同弧說明是“同一個(gè)圓”;等弧說明是“在同圓或等圓中”.
問題:“同弧”能否改成“同弦”呢?同弦所對(duì)的圓周角一定相等嗎?(學(xué)生通過交流獲得知識(shí))
問題3 :(1)一個(gè)特殊的圓弧——半圓,它所對(duì)的圓周角是什么樣的角?
。2)如果一條弧所對(duì)的圓周角是90°,那么這條弧所對(duì)的圓心角是什么樣的角?
學(xué)生通過以上兩個(gè)問題的解決,在教師引導(dǎo)下得推論2:
推論2 :半圓(或直徑)所對(duì)的圓周角是直角;90 °的圓周角所對(duì)的弦直徑.
指出:這個(gè)推論是圓中一個(gè)很重要的性質(zhì),為在圓中確定直角、成垂直關(guān)系創(chuàng)造了條件,要熟練掌握.
啟發(fā)學(xué)生根據(jù)推論2推出推論3:
推論3 :如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角是直角三角形.
指出:推論3是下面定理的逆定理:在直角三角形中,斜邊上的中線等于斜邊的一半.
。ㄈ⿷(yīng)用、反思
例1、如圖,AD是△ABC的高,AE是△ABC的外接圓直徑.
求證:AB·AC=AE·AD.
對(duì)A層同學(xué),讓學(xué)生自主地分析問題、解決問題,進(jìn)行生生交流,師生交流;其他層次的學(xué)生在教師引導(dǎo)下完成.
交流:①分析解題思路;②作輔助線的方法;③解題推理過程(要規(guī)范).
解(略)
教師引導(dǎo)學(xué)生思考:(1)此題還有其它證法嗎?(2)比較以上證法的優(yōu)缺點(diǎn).
指出:在解圓的有關(guān)問題時(shí),常常需要添加輔助線,構(gòu)成直徑上的圓周角,以便利用直徑上的圓周角是直角的性質(zhì).
變式練習(xí)1:如圖,△ABC內(nèi)接于⊙O,∠1=∠2.
求證:AB·AC=AE·AD.
變式練習(xí)2:如圖,已知△ABC內(nèi)接于⊙O,弦AE平分
∠BAC交BC于D.
求證:AB·AC=AE·AD.
指出:這組題目比較典型,圓和相似三角形有密切聯(lián)系,證明圓中某些線段成比例,常常需要找出或通過輔助線構(gòu)造出相似三角形.
例2:如圖,已知在⊙O中,直徑AB為10厘米,弦AC為6厘米,∠ACB的平分線交⊙O于D;
求BC,AD和BD的長(zhǎng).
解:(略)
說明:充分利用直徑所對(duì)的圓周角為直角,解直角三角形.
練習(xí):教材P96中1、2
(四)小結(jié)(指導(dǎo)學(xué)生共同小結(jié))
知識(shí):本節(jié)課主要學(xué)習(xí)了圓周角定理的三個(gè)推論.這三個(gè)推論各具特色,作用各異,在今后的學(xué)習(xí)中應(yīng)用十分廣泛,應(yīng)熟練掌握.
能力:在解圓的有關(guān)問題時(shí),常常需要添加輔助線,構(gòu)成直徑所對(duì)的圓周角或構(gòu)成相似三角形,這種基本技能技巧一定要掌握.
(五)作業(yè)
教材P100.習(xí)題A組9、10、12、13、14題;另外A層同學(xué)做P102B組3,4題.
探究活動(dòng)
我們已經(jīng)學(xué)習(xí)了“圓周角的度數(shù)等于它所對(duì)的弧的度數(shù)的一半”,但當(dāng)角的頂點(diǎn)在圓外(如圖①稱圓外角)或在圓內(nèi)(如圖②稱圓內(nèi)角),它的度數(shù)又和什么有關(guān)呢?請(qǐng)?zhí)骄浚?/p>
提示:(1)連結(jié)BC,可得∠E=(的度數(shù)—的度數(shù))
。2)延長(zhǎng)AE、CE分別交圓于B、D,則∠B=的度數(shù),
∠C=的度數(shù),
∴∠AEC=∠B+∠C=(的度數(shù)+的度數(shù)).
初中數(shù)學(xué)圓教案5
教學(xué)目標(biāo):
利用數(shù)形結(jié)合的數(shù)學(xué)思想分析問題解決問題。
利用已有二次函數(shù)的知識(shí)經(jīng)驗(yàn),自主進(jìn)行探究和合作學(xué)習(xí),解決情境中的數(shù)學(xué)問題,初步形成數(shù)學(xué)建模能力,解決一些簡(jiǎn)單的實(shí)際問題。
在探索中體驗(yàn)數(shù)學(xué)來源于生活并運(yùn)用于生活,感悟二次函數(shù)中數(shù)形結(jié)合的美,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,通過合作學(xué)習(xí)獲得成功,樹立自信心。
教學(xué)重點(diǎn)和難點(diǎn):
運(yùn)用數(shù)形結(jié)合的思想方法進(jìn)行解二次函數(shù),這是重點(diǎn)也是難點(diǎn)。
教學(xué)過程:
(一)引入:
分組復(fù)習(xí)舊知。
探索:從二次函數(shù)y=x2+4x+3在直角坐標(biāo)系中的圖象中,你能得到哪些信息?
可引導(dǎo)學(xué)生從幾個(gè)方面進(jìn)行討論:
(1)如何畫圖
(2)頂點(diǎn)、圖象與坐標(biāo)軸的交點(diǎn)
(3)所形成的三角形以及四邊形的面積
(4)對(duì)稱軸
從上面的問題導(dǎo)入今天的課題二次函數(shù)中的圖象與性質(zhì)。
(二)新授:
1、再探索:二次函數(shù)y=x2+4x+3圖象上找一點(diǎn),使形成的圖形面積與已知圖形面積有數(shù)量關(guān)系。例如:拋物線y=x2+4x+3的頂點(diǎn)為點(diǎn)a,且與x軸交于點(diǎn)b、c;在拋物線上求一點(diǎn)e使sbce= sabc。
再探索:在拋物線y=x2+4x+3上找一點(diǎn)f,使bce與bcd全等。
再探索:在拋物線y=x2+4x+3上找一點(diǎn)m,使bom與abc相似。
2、讓同學(xué)討論:從已知條件如何求二次函數(shù)的解析式。
例如:已知一拋物線的'頂點(diǎn)坐標(biāo)是c(2,1)且與x軸交于點(diǎn)a、點(diǎn)b,已知sabc=3,求拋物線的解析式。
(三)提高練習(xí)
根據(jù)我們學(xué)校人人皆知的船模特色項(xiàng)目設(shè)計(jì)了這樣一個(gè)情境:
讓班級(jí)中的上科院小院士來簡(jiǎn)要介紹學(xué)校船模組的情況以及在繪制船模圖紙時(shí)也常用到拋物線的知識(shí)的情況,再出題:船身的龍骨是近似拋物線型,船身的最大長(zhǎng)度為48cm,且高度為12cm。求此船龍骨的拋物線的解析式。
讓學(xué)生在練習(xí)中體會(huì)二次函數(shù)的圖象與性質(zhì)在解題中的作用。
(四)讓學(xué)生討論小結(jié)(略)
(五)作業(yè)布置
1、在直角坐標(biāo)平面內(nèi),點(diǎn)o為坐標(biāo)原點(diǎn),二次函數(shù)y=x2+(k—5)x—(k+4)的圖象交x軸于點(diǎn)a(x1,0)、b(x2,0)且(x1+1)(x2+1)=—8。
(1)求二次函數(shù)的解析式;
(2)將上述二次函數(shù)圖象沿x軸向右平移2個(gè)單位,設(shè)平移后的圖象與y軸的交點(diǎn)為c,頂點(diǎn)為p,求 poc的面積。
2、如圖,一個(gè)二次函數(shù)的圖象與直線y= x—1的交點(diǎn)a、b分別在x、y軸上,點(diǎn)c在二次函數(shù)圖象上,且cbab,cb=ab,求這個(gè)二次函數(shù)的解析式。
3、盧浦大橋拱形可以近似看作拋物線的一部分,在大橋截面1:11000的比例圖上,跨度ab=5cm,拱高oc=0.9cm,線段de表示大橋拱內(nèi)橋長(zhǎng),de∥ab,如圖1,在比例圖上,以直線ab為x軸,拋物線的對(duì)稱軸為y軸,以1cm作為數(shù)軸的單位長(zhǎng)度,建立平面直角坐標(biāo)系,如圖2。
(1)求出圖2上以這一部分拋物線為圖象的函數(shù)解析式,寫出函數(shù)定義域;
(2)如果de與ab的距離om=0.45cm,求盧浦大橋拱內(nèi)實(shí)際橋長(zhǎng)(備用數(shù)據(jù): ,計(jì)算結(jié)果精確到1米)
初中數(shù)學(xué)圓教案6
知識(shí)技能目標(biāo)
1、理解反比例函數(shù)的圖象是雙曲線,利用描點(diǎn)法畫出反比例函數(shù)的圖象,說出它的性質(zhì);
2、利用反比例函數(shù)的圖象解決有關(guān)問題。
過程性目標(biāo)
1、經(jīng)歷對(duì)反比例函數(shù)圖象的觀察、分析、討論、概括過程,會(huì)說出它的性質(zhì);
2、探索反比例函數(shù)的圖象的性質(zhì),體會(huì)用數(shù)形結(jié)合思想解數(shù)學(xué)問題。
教學(xué)過程
一、創(chuàng)設(shè)情境
上節(jié)的練習(xí)中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線。那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k≠0)的圖象,探究它有什么性質(zhì)。
二、探究歸納
1、畫出函數(shù)的圖象。
分析畫出函數(shù)圖象一般分為列表、描點(diǎn)、連線三個(gè)步驟,在反比例函數(shù)中自變量x≠0。
解
1、列表:這個(gè)函數(shù)中自變量x的取值范圍是不等于零的一切實(shí)數(shù),列出x與y的對(duì)應(yīng)值:
2、描點(diǎn):用表里各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出在京各點(diǎn)點(diǎn)(—6,—1)、(—3,—2)、(—2,—3)等。
3、連線:用平滑的曲線將第一象限各點(diǎn)依次連起來,得到圖象的第一個(gè)分支;用平滑的曲線將第三象限各點(diǎn)依次連起來,得到圖象的另一個(gè)分支。這兩個(gè)分支合起來,就是反比例函數(shù)的圖象。
上述圖象,通常稱為雙曲線(hyperbola)。
提問這兩條曲線會(huì)與x軸、y軸相交嗎?為什么?
學(xué)生試一試:畫出反比例函數(shù)的圖象(學(xué)生動(dòng)手畫反比函數(shù)圖象,進(jìn)一步掌握畫函數(shù)圖象的步驟)。
學(xué)生討論、交流以下問題,并將討論、交流的結(jié)果回答問題。
1、這個(gè)函數(shù)的圖象在哪兩個(gè)象限?和函數(shù)的圖象有什么不同?
2、反比例函數(shù)(k≠0)的圖象在哪兩個(gè)象限內(nèi)?由什么確定?
3、聯(lián)系一次函數(shù)的性質(zhì),你能否總結(jié)出反比例函數(shù)中隨著自變量x的增加,函數(shù)y將怎樣變化?有什么規(guī)律?
反比例函數(shù)有下列性質(zhì):
。1)當(dāng)k>0時(shí),函數(shù)的圖象在第一、三象限,在每個(gè)象限內(nèi),曲線從左向右下降,也就是在每個(gè)象限內(nèi)y隨x的增加而減少;
(2)當(dāng)k
注
1、雙曲線的兩個(gè)分支與x軸和y軸沒有交點(diǎn);
2、雙曲線的兩個(gè)分支關(guān)于原點(diǎn)成中心對(duì)稱。
以上兩點(diǎn)性質(zhì)在上堂課的問題1和問題2中反映了怎樣的實(shí)際意義?
在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時(shí)間少。
在問題2中反映了在面積一定的情況下,飼養(yǎng)場(chǎng)的一邊越長(zhǎng),另一邊越小。
三、實(shí)踐應(yīng)用
例1若反比例函數(shù)的圖象在第二、四象限,求m的值。
分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+1
解由題意,得解得。
例2已知反比例函數(shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,求一次函數(shù)y=kx—k的圖象經(jīng)過的象限。
分析由于反比例函數(shù)(k≠0),當(dāng)x>0時(shí),y隨x的.增大而增大,因此k0,所以直線與y軸的交點(diǎn)在x軸的上方。解因?yàn)榉幢壤瘮?shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,所以k
例3已知反比例函數(shù)的圖象過點(diǎn)(1,—2)。
。1)求這個(gè)函數(shù)的解析式,并畫出圖象;
。2)若點(diǎn)a(—5,m)在圖象上,則點(diǎn)a關(guān)于兩坐標(biāo)軸和原點(diǎn)的對(duì)稱點(diǎn)是否還在圖象上?
分析(1)反比例函數(shù)的圖象過點(diǎn)(1,—2),即當(dāng)x=1時(shí),y=—2。由待定系數(shù)法可求出反比例函數(shù)解析式;再根據(jù)解析式,通過列表、描點(diǎn)、連線可畫出反比例函數(shù)的圖象;
。2)由點(diǎn)a在反比例函數(shù)的圖象上,易求出m的值,再驗(yàn)證點(diǎn)a關(guān)于兩坐標(biāo)軸和原點(diǎn)的對(duì)稱點(diǎn)是否在圖象上。
解(1)設(shè):反比例函數(shù)的解析式為:(k≠0)。
而反比例函數(shù)的圖象過點(diǎn)(1,—2),即當(dāng)x=1時(shí),y=—2。
所以,k=—2。
即反比例函數(shù)的解析式為:。
。2)點(diǎn)a(—5,m)在反比例函數(shù)圖象上,所以,點(diǎn)a的坐標(biāo)為。
點(diǎn)a關(guān)于x軸的對(duì)稱點(diǎn)不在這個(gè)圖象上;
點(diǎn)a關(guān)于y軸的對(duì)稱點(diǎn)不在這個(gè)圖象上;
點(diǎn)a關(guān)于原點(diǎn)的對(duì)稱點(diǎn)在這個(gè)圖象上;
例4已知函數(shù)為反比例函數(shù)。
。1)求m的值;
。2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?
。3)當(dāng)—3≤x≤時(shí),求此函數(shù)的最大值和最小值。
解(1)由反比例函數(shù)的定義可知:解得,m=—2。
。2)因?yàn)椤?
。3)因?yàn)樵诘趥(gè)象限內(nèi),y隨x的增大而增大,所以當(dāng)x=時(shí),y最大值=;
當(dāng)x=—3時(shí),y最小值=。
所以當(dāng)—3≤x≤時(shí),此函數(shù)的最大值為8,最小值為。
例5一個(gè)長(zhǎng)方體的體積是100立方厘米,它的長(zhǎng)是y厘米,寬是5厘米,高是x厘米。
。1)寫出用高表示長(zhǎng)的函數(shù)關(guān)系式;
。2)寫出自變量x的取值范圍;
。3)畫出函數(shù)的圖象。
解(1)因?yàn)?00=5xy,所以。
。2)x>0。
。3)圖象如下:
說明由于自變量x>0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個(gè)分支。
四、交流反思
本節(jié)課學(xué)習(xí)了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì)。
1、反比例函數(shù)的圖象是雙曲線(hyperbola)。
2、反比例函數(shù)有如下性質(zhì):
。1)當(dāng)k>0時(shí),函數(shù)的圖象在第一、三象限,在每個(gè)象限內(nèi),曲線從左向右下降,也就是在每個(gè)象限內(nèi)y隨x的增加而減少;
。2)當(dāng)k
五、檢測(cè)反饋
1、在同一直角坐標(biāo)系中畫出下列函數(shù)的圖象:
。1);(2)。
2、已知y是x的反比例函數(shù),且當(dāng)x=3時(shí),y=8,求:
。1)y和x的函數(shù)關(guān)系式;
。2)當(dāng)時(shí),y的值;
。3)當(dāng)x取何值時(shí),?
3、若反比例函數(shù)的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值。
4、已知反比例函數(shù)經(jīng)過點(diǎn)a(2,—m)和b(n,2n),求:
。1)m和n的值;
。2)若圖象上有兩點(diǎn)p1(x1,y1)和p2(x2,y2),且x1
初中數(shù)學(xué)圓教案7
教學(xué)目標(biāo):
1.使學(xué)生理解直線和圓的相交、相切、相離的概念。
2.掌握直線與圓的位置關(guān)系的性質(zhì)與判定并能夠靈活運(yùn)用來解決實(shí)際問題。
3.培養(yǎng)學(xué)生把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力及分類和化歸的能力。
重點(diǎn)難點(diǎn):
1.重點(diǎn):直線與圓的三種位置關(guān)系的概念。
2.難點(diǎn):運(yùn)用直線與圓的位置關(guān)系的性質(zhì)及判定解決相關(guān)的問題。
教學(xué)過程:
一.復(fù)習(xí)引入
1.提問:復(fù)習(xí)點(diǎn)和圓的三種位置關(guān)系。
(目的:讓學(xué)生將點(diǎn)和圓的位置關(guān)系與直線和圓的位置關(guān)系進(jìn)行類比,以便更好的掌握直線和圓的位置關(guān)系)
2.由日出升起過程當(dāng)中的三個(gè)特殊位置引入直線與圓的位置關(guān)系問題。
。康模鹤寣W(xué)生感知直線和圓的位置關(guān)系,并培養(yǎng)學(xué)生把實(shí)際問題抽象成數(shù)學(xué)模型的能力)
二.定義、性質(zhì)和判定
1.結(jié)合關(guān)于日出的三幅圖形,通過學(xué)生討論,給出直線與圓的'三種位置關(guān)系的定義。
。1)線和圓有兩個(gè)公共點(diǎn)時(shí),叫做直線和圓相交。這時(shí)直線叫做圓的割線。
。2)直線和圓有唯一的公點(diǎn)時(shí),叫做直線和圓相切。這時(shí)直線叫做圓的切線。唯一的公共點(diǎn)叫做切點(diǎn)。
(3)直線和圓沒有公共點(diǎn)時(shí),叫做直線和圓相離。
2.直線和圓三種位置關(guān)系的性質(zhì)和判定:
如果⊙O半徑為r,圓心O到直線l的距離為d,那么:
。1)線l與⊙O相交 d<r
。2)直線l與⊙O相切d=r
(3)直線l與⊙O相離d>r
三.例題分析:
例(1)在Rt△ABC中,AC=3cm,BC=4cm,以C為圓心,r為半徑。
①當(dāng)r= 時(shí),圓與AB相切。
②當(dāng)r=2cm時(shí),圓與AB有怎樣的位置關(guān)系,為什么?
、郛(dāng)r=3cm時(shí),圓與AB又是怎樣的位置關(guān)系,為什么?
、芩伎迹寒(dāng)r滿足什么條件時(shí)圓與斜邊AB有一個(gè)交點(diǎn)?
四.小結(jié)(學(xué)生完成)
五、隨堂練習(xí):
(1)直線和圓有種位置關(guān)系,是用直線和圓的個(gè)數(shù)來定義的;這也是判斷直線和圓的位置關(guān)系的重要方法。
(2)已知⊙O的直徑為13cm,直線L與圓心O的距離為d。
、佼(dāng)d=5cm時(shí),直線L與圓的位置關(guān)系是;
、诋(dāng)d=13cm時(shí),直線L與圓的位置關(guān)系是;
、郛(dāng)d=6。5cm時(shí),直線L與圓的位置關(guān)系是;
(目的:直線和圓的位置關(guān)系的判定的應(yīng)用)
(3)⊙O的半徑r=3cm,點(diǎn)O到直線L的距離為d,若直線L 與⊙O至少有一個(gè)公共點(diǎn),則d應(yīng)滿足的條件是()
(A)d=3 (B)d≤3 (C)d<3 d="">3
。康模褐本和圓的位置關(guān)系的性質(zhì)的應(yīng)用)
(4)⊙O半徑=3cm。點(diǎn)P在直線L上,若OP=5 cm,則直線L與⊙O的位置關(guān)系是()
(A)相離(B)相切(C)相交(D)相切或相交
(目的:點(diǎn)和圓,直線和圓的位置關(guān)系的結(jié)合,提高學(xué)生的綜合、開放性思維)
想一想:
在平面直角坐標(biāo)系中有一點(diǎn)A(-3,-4),以點(diǎn)A為圓心,r長(zhǎng)為半徑時(shí),
思考:隨著r的變化,⊙A與坐標(biāo)軸交點(diǎn)的變化情況。(有五種情況)
六、作業(yè):P100—2、3
初中數(shù)學(xué)圓教案8
教學(xué)目標(biāo):
1、使學(xué)生學(xué)會(huì)較熟煉地運(yùn)用切線的判定方法和切線的性質(zhì)證明問題。
2、掌握運(yùn)用切線的性質(zhì)和切線的判定的有關(guān)問題中輔助線引法的基本規(guī)律。
教學(xué)重點(diǎn):
使學(xué)生準(zhǔn)確、熟煉、靈活地運(yùn)用切線的判定方法及其性質(zhì)。教學(xué)難點(diǎn):學(xué)生對(duì)題目不能準(zhǔn)確地進(jìn)行論證。證題中常會(huì)出現(xiàn)不知如何入手,不知往哪個(gè)方向證的情形。
教學(xué)過程:
一、新課引入:
我們已經(jīng)系統(tǒng)地學(xué)習(xí)了切線的判定方法和切線的性質(zhì),現(xiàn)在我們來利用這些知識(shí)證明有關(guān)幾何問題。
二、新課講解:
實(shí)際上在幾何證明題中,我們更多地將切線的判定定理和性質(zhì)定理應(yīng)用在具體的問題中,而一道幾何題的分析過程,是證題中的最關(guān)鍵步驟。p.109例3如圖7-58,已知:ab是⊙o的直徑,bc是⊙o的切線,切點(diǎn)為b,oc平行于弦ad.求證:dc是⊙o的切線。
分析:欲證cd是⊙o的切線,d是⊙o的弦ad的一個(gè)端點(diǎn)當(dāng)然在⊙o上,屬于公共點(diǎn)已給定,而證直線是圓的切線的情形。所以輔助線應(yīng)該是連結(jié)oc.只要證od⊥cd即可。亦就是證∠odc=90°,所以只要證∠odc=∠obc即可,觀察圖形,兩個(gè)角分別位于△odc和△obc中,如果兩個(gè)三角形相似或全等都可以產(chǎn)生對(duì)應(yīng)角相等的結(jié)果。而圖形中已存在明顯的條件od=ob,oc=oc,只要證∠3=∠4,便可造成兩個(gè)三角形全等。
∠3如何等于∠4呢?題中還有一個(gè)已知條件ad∥oc,平行的位置關(guān)系,可以造成角的相等關(guān)系,從而導(dǎo)致∠3=∠4.命題得證。證明:連結(jié)od.教師向?qū)W生解釋書上的證題格式屬于推出法和因?yàn)樗苑ǖ穆?lián)用,以后證題中同學(xué)可以借鑒。p.110例4如圖7-59,在以o為圓心的兩個(gè)同心圓中,大圓的弦ab和cd相等,且ab與小圓相切于點(diǎn)e求證:cd與小圓相切。
分析:欲證cd與小⊙o相切,但讀題后發(fā)現(xiàn)直線cd與小⊙o并未已知公共點(diǎn)。這個(gè)時(shí)候我們必須從圓心o向cd作垂線,設(shè)垂足為f.此時(shí)f點(diǎn)在直線cd上,如果我們能證得of等于小⊙o的半徑,則說明點(diǎn)f必在小⊙o上,即可根據(jù)切線的判定定理認(rèn)定cd與小⊙o相切。題目中已告訴我們ab切小⊙o于e,連結(jié)oe,便得到小⊙o的一條半徑,再根據(jù)大⊙o中弦相等則弦心距也相等,則可得到of=oe.證明:連結(jié)oe,過o作of⊥cd,重足為f.
請(qǐng)同學(xué)們注意本題中證一條直線是圓的切線時(shí),這種證明途徑是由直線與圓的公共點(diǎn)來給定所決定的。
練習(xí)
p.111,1.已知:oc平分∠aob,d是oc上任意一點(diǎn),⊙d與oa相切于點(diǎn)e.求證:ob與⊙d相切。分析:審題后發(fā)現(xiàn)欲證的ob與⊙d相切,屬于ob與⊙d無公共點(diǎn)的情況。這時(shí)應(yīng)從圓心d向⊙b作垂線,垂足為f,然后證垂線段df等于⊙b的一條半徑,而題目中已給oa與⊙d切于點(diǎn)e,只要連結(jié)de.再根據(jù)角平分線的性質(zhì),問題便得到解決。證明:連結(jié)de,作df⊥ob,重足為f.p.111中2.已知如圖7-61,△abc為等腰三角形,o是底邊bc的中點(diǎn),⊙o與腰ab相切于點(diǎn)d.求證:ac與⊙o相切。
分析:欲證ac與⊙o相切,同第1題一樣,同屬于直線與圓的公共點(diǎn)未給定情況。輔助線的.方法同第1題,證法類同。只不過要針對(duì)本題特點(diǎn)還要連結(jié)oa.從等腰三角形的”三線合一”的性質(zhì)出發(fā),證得oa平分∠bac,然后再根據(jù)角平分線的性質(zhì),使問題得到證明。證明:連結(jié)od、oa,作oe⊥ac,垂足為e.同學(xué)們想一想,在證明oe=od時(shí),還可以怎樣證?
(答案)可通過“角、角、邊”證rt△odb≌rt△oec.
三、新課講解
為培養(yǎng)學(xué)生閱讀教材的習(xí)慣讓學(xué)生閱讀109頁到110頁。從中總結(jié)出本課的主要內(nèi)容:
1.在證題中熟練應(yīng)用切線的判定方法和切線的性質(zhì)。
2.在證明一條直線是圓的切線時(shí),只能遇到兩種情形之一,針對(duì)不同的情形,選擇恰當(dāng)?shù)淖C明途徑,務(wù)必使同學(xué)們真正掌握。
(1)公共點(diǎn)已給定。做法是“連結(jié)”半徑,讓半徑“垂直”于直線。
(2)公共點(diǎn)未給定。做法是從圓心向直線“作垂線”,證“垂線段等于半徑”。
四、布置作業(yè)
教材p.116中8、9.2.教材p.117
初中數(shù)學(xué)圓教案9
尊敬的各位評(píng)委,親愛的各位同行:
大家好!
今天我的說課內(nèi)容是人教版九年級(jí)上冊(cè)第二十四章第二節(jié)第二課時(shí)的直線與圓的位置關(guān)系。下面我將以教什么、怎么樣教、為什么這樣教為思路從教材分析、學(xué)情分析、教學(xué)目標(biāo)、學(xué)法教法、教學(xué)過程和板書設(shè)計(jì)六個(gè)方面對(duì)本課進(jìn)行說明。
一、教材分析
教材的地位和作用。
圓在平面幾何中占有重要地位,它被安排在初中數(shù)學(xué)第二十四章,屬于一個(gè)提高階段。而直線和圓的位置關(guān)系又是本章的一個(gè)中心內(nèi)容。從知識(shí)體系上看:它有著承上啟下的作用,既是對(duì)點(diǎn)與圓的位置關(guān)系的延續(xù)與提高,又是后面學(xué)習(xí)切線的性質(zhì)和判定、圓和圓的位置關(guān)系及高中繼續(xù)學(xué)習(xí)幾何知識(shí)的基礎(chǔ)。從數(shù)學(xué)思想方法層面上看:它運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn)揭示了知識(shí)的發(fā)生過程以及相關(guān)知識(shí)間的內(nèi)在聯(lián)系,滲透了數(shù)形結(jié)合、分類討論、類比等數(shù)學(xué)思想方法,有助于提高學(xué)生的數(shù)學(xué)思維品質(zhì)。
二、學(xué)情分析
在此之前學(xué)生已經(jīng)學(xué)習(xí)了點(diǎn)和圓的位置關(guān)系,對(duì)圓有了一定的感性和理性認(rèn)識(shí),但在某種程度上特別是平面幾何問題上,學(xué)生還是依靠事物的具體直觀形象。加之九年級(jí)學(xué)生好奇心強(qiáng),活潑好動(dòng),注意力易分散,認(rèn)知水平大都停留在表面現(xiàn)象,對(duì)親身體驗(yàn)的事物容易激發(fā)求知的渴望,因此要想方設(shè)法,引導(dǎo)學(xué)生深入思考、主動(dòng)探究、主動(dòng)獲取新知識(shí)。
三、教學(xué)目標(biāo):
根據(jù)學(xué)生已有的認(rèn)知基礎(chǔ)及本課的教材的地位、作用,結(jié)合數(shù)學(xué)課程標(biāo)準(zhǔn)我將確定如下的教學(xué)目標(biāo):
(1)掌握直線和圓的三種位置關(guān)系性質(zhì)及判定。
(2)通過觀察、實(shí)驗(yàn)、合作交流等數(shù)學(xué)活動(dòng)使學(xué)生了解探索問題的一般方法;
。3)通過直線和圓的位置關(guān)系的探究,向?qū)W生滲透分類討論、數(shù)形結(jié)合、類比的數(shù)學(xué)思想 ,陪養(yǎng)學(xué)生觀察、分析和概括的能力;
。4)體會(huì)事物間的相互滲透,感受數(shù)學(xué)思維的嚴(yán)謹(jǐn)性,并在合作學(xué)習(xí)中體驗(yàn)成功的喜悅。
教學(xué)的重難點(diǎn):
重點(diǎn):直線和圓的三種位置關(guān)系的性質(zhì)與判定。
難點(diǎn):用數(shù)量法刻畫直線與圓的三種位置關(guān)系。
突破難點(diǎn)的策略:引導(dǎo)學(xué)生動(dòng)手動(dòng)腦、操作實(shí)踐,類比點(diǎn)和圓的位置關(guān)系的判定方法,配合幾何畫板直觀演示來加深學(xué)生對(duì)知識(shí)的理解。
四、學(xué)法教法
教無定法,教學(xué)有法,貴在得法。根據(jù)新課改理念及學(xué)生特點(diǎn),本節(jié)課主要采用“啟發(fā)式”問題教學(xué)法,根據(jù)維果斯基的“最近發(fā)展區(qū)理論”,站在學(xué)生思維的最近發(fā)展區(qū)上啟發(fā)誘導(dǎo),用環(huán)環(huán)相扣的問題將探究活動(dòng)層層深入;整堂課緊緊圍繞“情景問題――學(xué)生體驗(yàn)――合作交流”的學(xué)習(xí)模式展開,并充分發(fā)揮幾何畫板、多媒體課件直觀、形象的功能輔助教學(xué),激勵(lì)學(xué)生積極參與、觀察、發(fā)現(xiàn)其知識(shí)的內(nèi)在聯(lián)系,使每個(gè)學(xué)生都能積極思維。
五、教學(xué)過程
(1)創(chuàng)設(shè)情境,引出課題(3分鐘)
從學(xué)生的生活經(jīng)驗(yàn)和已有知識(shí)出發(fā),創(chuàng)設(shè)情境。通過多媒體課件展示《海上日出》的朗誦視頻,讓學(xué)生觀察并抽象出其中的幾何圖形(直線和圓),營(yíng)造探索問題的氛圍,從而引出課題(直線和圓的位置關(guān)系)。同時(shí)讓學(xué)生體會(huì)到數(shù)學(xué)知識(shí)無處不在,應(yīng)用數(shù)學(xué)無處不有,符合“數(shù)學(xué)教學(xué)應(yīng)從生活經(jīng)驗(yàn)出發(fā)”的新課標(biāo)要求。
(2)動(dòng)手操作探求新知(20分鐘)
a、學(xué)生動(dòng)手實(shí)驗(yàn)――探究位置關(guān)系得出概念
美國(guó)學(xué)者說過:聽過的會(huì)忘記,看過的會(huì)記得,做過的能學(xué)會(huì)?梢妼(shí)驗(yàn)法在教學(xué)中有著何等重要的作用。從這一思想出發(fā),我設(shè)計(jì)了一個(gè)動(dòng)手操作的環(huán)節(jié):讓學(xué)生在紙上畫一條直線,把課前準(zhǔn)備好的圓卡片,在紙上移動(dòng),再現(xiàn)日出的整個(gè)過程,并歸納其公共點(diǎn)的個(gè)數(shù)變化情況。
然后提出問題:你能由此歸納出直線和圓有幾種不同的位置關(guān)系嗎?你是怎樣區(qū)分這幾種位置關(guān)系的?如何用語言描述位置關(guān)系?教師層層設(shè)問,讓學(xué)生思維自然發(fā)展,教學(xué)有序的進(jìn)入實(shí)質(zhì)部分。由于動(dòng)手操作環(huán)節(jié)的鋪墊,學(xué)生很容易能夠從公共點(diǎn)個(gè)數(shù)的變化情況對(duì)直線和圓的位置關(guān)系進(jìn)行分類。通過學(xué)生演示歸納,師生共同得出有關(guān)概念。教師板書講解內(nèi)容并總結(jié):可利用直線與圓的交點(diǎn)個(gè)數(shù)判斷直線與圓的三種位置關(guān)系。特別強(qiáng)調(diào)相切中“只有一個(gè)交點(diǎn)”的含義。
b、講練結(jié)合――運(yùn)用定義法、引出數(shù)量法
在學(xué)習(xí)了直線和圓的位置關(guān)系后,學(xué)生自然就得到了直線和圓的位置關(guān)系的第一種判定方法:定義法,這種方法對(duì)學(xué)生而言比較直觀簡(jiǎn)單,因此教材上沒有相應(yīng)的練習(xí)。于是我設(shè)計(jì)了一道練習(xí)題:在練習(xí)中讓學(xué)生發(fā)現(xiàn)用定義法來判斷直線和圓的位置關(guān)系的局限性,當(dāng)公共點(diǎn)個(gè)數(shù)不好判斷時(shí)又該怎么辦呢?你能類比之前所學(xué)的點(diǎn)和圓的位置關(guān)系的判定方法加以說明嗎?從而引出用數(shù)量關(guān)系刻畫直線和圓的位置關(guān)系的學(xué)習(xí)。
c、類比總結(jié)――探究第二種判定方法
由點(diǎn)與圓的位置關(guān)系的性質(zhì)與判定,類比遷移到直線與圓的`位置關(guān)系,學(xué)生較容易想到畫圖、測(cè)量等實(shí)驗(yàn)方法,小組交流合作,教師適時(shí)指導(dǎo),再利用幾何畫板重復(fù)演示得出結(jié)論:
、賒>r,直線L和⊙O相離;
、赿=r,直線L和⊙O相切;
、踕<r,直線L和⊙O相交,也就是用圓心到直線的距離d與半徑r的大小關(guān)系來判定直線和圓三種位置關(guān)系,并強(qiáng)調(diào):既是性質(zhì)也是判定。
在動(dòng)手操作,探索新知的過程中,讓學(xué)生參與到定義的形成與給出過程中,在練習(xí)中發(fā)現(xiàn)定義法的局限性,從而引出對(duì)數(shù)量法的學(xué)習(xí),讓學(xué)生類比點(diǎn)和圓的位置關(guān)系的判定,驗(yàn)證直線和圓的位置關(guān)系,更加直接而自然,有效的突破教學(xué)難點(diǎn),也讓學(xué)生感受到所學(xué)知識(shí)間的相互聯(lián)系。
(3)鞏固練習(xí),提高能力(10分鐘)
為得到及時(shí)的反饋情況,我設(shè)計(jì)了如下的練習(xí),而這個(gè)時(shí)段的學(xué)生因疲勞,注意力易分散,我抓住學(xué)生的好勝心理,首先設(shè)計(jì)了一道填空題:看誰搶得快
1、已知圓的直徑為13cm,設(shè)直線和圓心的距離為d:
1)若d=4、5cm ,則直線和圓,直線和圓有____個(gè)公共點(diǎn);
2)若d=6、5cm ,則直線和圓______,直線和圓有____個(gè)公共點(diǎn);
3)若d= 8 cm ,則直線和圓______,直線和圓有____個(gè)公共點(diǎn)。
這道題同時(shí)運(yùn)用了數(shù)量法和定義法的判定,解題關(guān)鍵是要引導(dǎo)學(xué)生找出d與r并進(jìn)行比較,從中體現(xiàn)數(shù)學(xué)中的轉(zhuǎn)化思想。
2 、Rt△ABC中,∠C=90°,AC=3cm,BC= 4cm,判斷以點(diǎn)C為圓心,下列r為半徑的⊙ C與AB的位置關(guān)系:
。1)r =2cm;
。2)r =2、4cm;
。3)r =3cm 。 (P101習(xí)題24、2第2題)
3 、在Rt△ABC中,∠C=90°,AC=3cm,BC= 4cm,以C為圓心,r為半徑的圓
。1)當(dāng)圓C與線段AB相交時(shí),r;
。2)當(dāng)圓C與線段AB相切時(shí),r;
。3)當(dāng)圓C與線段AB相離時(shí),r;
解題關(guān)鍵是要引導(dǎo)學(xué)生找出這兩個(gè)問題的不同與聯(lián)系,再進(jìn)行求解。通過這兩個(gè)題可以培養(yǎng)學(xué)生解決變式問題的能力。教師引導(dǎo)學(xué)生完成,加強(qiáng)個(gè)別指導(dǎo)。
(4)課堂小結(jié)構(gòu)建體系(5分鐘)
本節(jié)課你有哪些收獲?你還有哪些疑惑?
。ㄍㄟ^提問方式進(jìn)行小結(jié),交流收獲與不足,讓學(xué)生養(yǎng)成學(xué)習(xí),總結(jié)―再學(xué)習(xí)的良好學(xué)習(xí)習(xí)慣。教師再總結(jié):這節(jié)課我們學(xué)習(xí)了三種位置關(guān)系、兩種判定方法、三種思想,有利于幫助學(xué)生理清知識(shí)脈絡(luò),鞏固學(xué)習(xí)效果。3、2、3)
(5)作業(yè)布置課后延伸(2分鐘)
必做題:
1、閱讀教材100-101
2、P112練習(xí)2
選做題:如圖,已知∠AOB=β(β為銳角),M為OB上一點(diǎn),且OM=5cm,以M為圓心、以2.5為半徑作圓
(1)⊙M與直線OA的位置關(guān)系由大小決定;
(2)若⊙M與直線OA相切,則β=;
(3)若⊙M與直線OA相交,則β的取值范圍是。
初中數(shù)學(xué)圓教案10
教學(xué)目標(biāo)
1.初步掌握用直接開平方法解一元二次方程,會(huì)用直接開平方法解形如的方程;
2.初步掌握用配方法解一元二次方程,會(huì)用配方法解數(shù)字系數(shù)的一元二次方程;
3.掌握一元二次方程的求根公式的推導(dǎo),能夠運(yùn)用求根公式解一元二次方程;
4.會(huì)用因式分解法解某些一元二次方程。
5.通過對(duì)一元二次方程解法的教學(xué),使學(xué)生進(jìn)一步理解“降次”的數(shù)學(xué)方法,進(jìn)一步獲得對(duì)事物可以轉(zhuǎn)化的認(rèn)識(shí)。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):一元二次方程的`四種解法。
難點(diǎn):選擇恰當(dāng)?shù)姆椒ń庖辉畏匠獭?/p>
教學(xué)建議:
一、教材分析:
1.知識(shí)結(jié)構(gòu):一元二次方程的解法
2.重點(diǎn)、難點(diǎn)分析
。1)熟練掌握開平方法解一元二次方程
用開平方法解一元二次方程,一種是直接開平方法,另一種是配方法。
如果一元二次方程的一邊是未知數(shù)的平方或含有未知數(shù)的一次式的平方,另一邊是一個(gè)非負(fù)數(shù),或完全平方式,如方程,和方程就可以直接開平方法求解,在開平方時(shí)注意取正、負(fù)兩個(gè)平方根。
配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,轉(zhuǎn)化為的形式來求解。配方時(shí)要注意把二次項(xiàng)系數(shù)化為1和方程兩邊都加上一次項(xiàng)系數(shù)一半的平方這兩個(gè)關(guān)鍵步驟。
。2)熟記求根公式和公式中字母的意義在使用求根公式時(shí)要注意以下三點(diǎn):
1)把方程化為一般形式,并做到、之間沒有公因數(shù),且二次項(xiàng)系數(shù)為正整數(shù),這樣代入公式計(jì)算較為簡(jiǎn)便。
2)把一元二次方程的各項(xiàng)系數(shù)、、代入公式時(shí),注意它們的符號(hào)。
3)當(dāng)時(shí),才能求出方程的兩根。
(3)抓住方程特點(diǎn),選用因式分解法解一元二次方程
如果一個(gè)一元二次方程的一邊是零,另一邊易于分解成兩個(gè)一次因式時(shí),就可以用因式分解法求解。這時(shí)只要使每個(gè)一次因式等于零,分別解兩個(gè)一元一次方程,得到兩個(gè)根就是一元二次方程的解。
我們共學(xué)習(xí)了四種解一元二次方程的方法:直接開平方法;配方法;公式法和因式分解法。解方程時(shí),要認(rèn)真觀察方程的特征,選用適當(dāng)?shù)姆椒ㄇ蠼狻?/p>
二、教法建議
1.教學(xué)方法建議采用啟發(fā)引導(dǎo),講練結(jié)合的授課方式,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位,學(xué)生獲取知識(shí)必須通過學(xué)生自己一系列思維活動(dòng)完成,啟發(fā)誘導(dǎo)學(xué)生深入思考問題,有利于培養(yǎng)學(xué)生思維靈活、嚴(yán)謹(jǐn)、深刻等良好思維品質(zhì).
2.注意培養(yǎng)應(yīng)用意識(shí).教學(xué)中應(yīng)不失時(shí)機(jī)地使學(xué)生認(rèn)識(shí)到數(shù)學(xué)源于實(shí)踐并反作用于實(shí)踐.
初中數(shù)學(xué)圓教案11
一、課題
27.3過三點(diǎn)的圓
二、教學(xué)目標(biāo)
1.經(jīng)歷過一點(diǎn)、兩點(diǎn)和不在同一直線上的三點(diǎn)作圓的過程.
2..知道過不在同一條直線上的三個(gè)點(diǎn)畫圓的方法
3.了解三角形的外接圓和外心.
三、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):經(jīng)歷過一點(diǎn)、兩點(diǎn)和不在同一直線上的三點(diǎn)作圓的過程.
難點(diǎn):知道過不在同一條直線上的三個(gè)點(diǎn)畫圓的方法.
四、教學(xué)手段
現(xiàn)代課堂教學(xué)手段
五、教學(xué)方法
學(xué)生自己探索
六、教學(xué)過程設(shè)計(jì)
。ㄒ唬、新授
1.過已知一個(gè)點(diǎn)A畫圓,并考慮這樣的圓有多少個(gè)?
2.過已知兩個(gè)點(diǎn)A、B畫圓,并考慮這樣的圓有多少個(gè)?
3.過已知三個(gè)點(diǎn)A、B、C畫圓,并考慮這樣的圓有多少個(gè)?
讓學(xué)生以小組為單位,進(jìn)行探索、思考、交流后,小組選派代表向全班學(xué)生展示本小組的探索成果,在展示后,接受其他學(xué)生的質(zhì)疑.
得出結(jié)論:過一點(diǎn)可以畫無數(shù)個(gè)圓;過兩點(diǎn)也可以畫無數(shù)個(gè)圓;這些圓的圓心都在連結(jié)這兩點(diǎn)的線段的垂直平分線上;經(jīng)過不在同一直線上的三個(gè)點(diǎn)可以畫一個(gè)圓,并且這樣的圓只有一個(gè).
不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓.
給出三角形外接圓的概念:經(jīng)過三角形三個(gè)頂點(diǎn)可以作一個(gè)圓,這個(gè)圓叫作三角形的外接圓,外接圓的圓心叫做三角形的外心.
例:畫已知三角形的外接圓.
讓學(xué)生探索課本第15頁習(xí)題1.
一起探究
八年級(jí)(一)班的學(xué)生為老區(qū)的小朋友捐款500元,準(zhǔn)備為他們購買甲、乙兩種圖書共12套.已知甲種圖書每套45元,乙種圖書每套40元.這些錢最多能買甲種圖書多少套?
分析:帶領(lǐng)學(xué)生完成課本第13頁的表格,并完成2、3問題,使學(xué)生清楚通過列表可以更好的分析題目,對(duì)于情景較為復(fù)雜的問題情景可采用這種分析方法解題.另外通過此題,使學(xué)生認(rèn)識(shí)到:在應(yīng)不等式解決實(shí)際問題時(shí),當(dāng)求出不等式的解集后,還要根據(jù)問題的實(shí)際意義確定問題的解.
。ǘ、小結(jié)
七、練習(xí)設(shè)計(jì)
P15習(xí)題2、3
八、教學(xué)后記
后備練習(xí):
1.已知一個(gè)三角形的三邊長(zhǎng)分別是,則這個(gè)三角形的外接圓面積等于、
2.如圖,有A,,C三個(gè)居民小區(qū)的位置成三角形,現(xiàn)決定在三個(gè)小區(qū)之間修建一個(gè)購物超市,使超市到三個(gè)小區(qū)的距離相等,則超市應(yīng)建在()
A、在AC,BC兩邊高線的交點(diǎn)處
B、在AC,BC兩邊中線的交點(diǎn)處
C、在AC,BC兩邊垂直平分線的交點(diǎn)處
D、在A,B兩內(nèi)角平分線的交點(diǎn)處
初中數(shù)學(xué)圓教案3
公開課教案
授課時(shí)間:20xx.11.17早上第二節(jié)授課班級(jí):初三、1班授課教師:
教學(xué)內(nèi)容:7.7直線和圓的位置關(guān)系
教學(xué)目標(biāo):
知識(shí)與技能目標(biāo):
1、理解直線和圓相交、相切、相離的概念。
2.初步掌握直線和圓的位置關(guān)系的`性質(zhì)和判定及其靈活的應(yīng)用。
過程與方法目標(biāo):
1、通過直線和圓的位置關(guān)系的探究,向?qū)W生滲透分類、數(shù)形結(jié)合的思想,培養(yǎng)學(xué)生觀察、分析、概括、知識(shí)遷移的能力;
2.通過例題教學(xué),培養(yǎng)學(xué)生靈活運(yùn)用知識(shí)的解決能力。
情感與態(tài)度目標(biāo):讓學(xué)生從運(yùn)動(dòng)的觀點(diǎn)來觀察直線和圓相交、相切、相離的關(guān)系、關(guān)注知識(shí)的生成,發(fā)展與變化的過程,主動(dòng)探索,勇于發(fā)現(xiàn)。從而領(lǐng)悟世界上的一切物體都是運(yùn)動(dòng)變化著的,并且在一定的條件下可以轉(zhuǎn)化的辯證唯物主義觀點(diǎn)。
【初中數(shù)學(xué)圓教案】相關(guān)文章:
數(shù)學(xué)圓的認(rèn)識(shí)教案02-16
小學(xué)數(shù)學(xué)圓的面積的教案11-24
數(shù)學(xué)圓的認(rèn)識(shí)教案優(yōu)秀09-11
圓的標(biāo)準(zhǔn)方程數(shù)學(xué)教案12-06
小班數(shù)學(xué)教案有趣的圓02-05
中班數(shù)學(xué)教案:會(huì)變的圓10-19
數(shù)學(xué)初中教案11-18
《圓的認(rèn)識(shí)》教案06-26