91国產乱老熟视頻老熟女,97在线起碰视频,麻豆Av一区二区,亚洲视频国产91www.

<pre id="jdrot"></pre>

<td id="jdrot"><strong id="jdrot"></strong></td>
      <pre id="jdrot"></pre>

          當(dāng)前位置:9136范文網(wǎng)>教育范文>教學(xué)反思>二次函數(shù)教學(xué)反思

          二次函數(shù)教學(xué)反思

          時(shí)間:2024-05-14 06:24:02 教學(xué)反思 我要投稿

          二次函數(shù)教學(xué)反思

            作為一位到崗不久的教師,我們要有一流的課堂教學(xué)能力,通過教學(xué)反思可以有效提升自己的教學(xué)能力,怎樣寫教學(xué)反思才更能起到其作用呢?下面是小編收集整理的二次函數(shù)教學(xué)反思,僅供參考,大家一起來看看吧。

          二次函數(shù)教學(xué)反思

          二次函數(shù)教學(xué)反思1

            1、一定要留足時(shí)間讓學(xué)生自己作出二次函數(shù)的圖象

            可能在教學(xué)過程中,有些教師會覺得作圖象是上一節(jié)課的重點(diǎn),這一節(jié)主要是學(xué)生觀察、分析圖象,從而不讓學(xué)生畫圖象或者只是簡單的畫一兩個(gè)。這種做法看上去好像更加突出了重點(diǎn)、難點(diǎn),卻沒有給學(xué)生探索與發(fā)現(xiàn)的過程,造成學(xué)生對于二次函數(shù)性質(zhì)的理解停留在表面,知識遷移相對薄弱,不利于培養(yǎng)學(xué)生自主研究二次函數(shù)的能力。

            2、相信學(xué)生并為學(xué)生提供充分展示自己的機(jī)會

            在歸納二次函數(shù)性質(zhì)的時(shí)候,也要充分的相信學(xué)生,鼓勵(lì)學(xué)生大膽的用自己的語言進(jìn)行歸納,因?yàn)閷W(xué)生自己的發(fā)現(xiàn)遠(yuǎn)遠(yuǎn)比老師直接講解要深刻得多。在教學(xué)過程中,要注重為學(xué)生提供展示自己聰明才智的機(jī)會,這樣也利于教師發(fā)現(xiàn)學(xué)生分析問題解決問題的獨(dú)到見解,以及思維的誤區(qū),以便指導(dǎo)今后的`教學(xué)。課堂上要把激發(fā)學(xué)生學(xué)習(xí)熱情和獲得學(xué)習(xí)能力放在教學(xué)首位,通過運(yùn)用各種啟發(fā)、激勵(lì)的語言,以及組織小組合作學(xué)習(xí),幫助學(xué)生形成積極主動的求知態(tài)度。

            3、注意改進(jìn)的方面

            在讓學(xué)生歸納二次函數(shù)性質(zhì)的時(shí)候,學(xué)生可能會歸納得比較片面或者沒有找出關(guān)鍵點(diǎn),教師一定要注意引導(dǎo)學(xué)生從多個(gè)角度進(jìn)行考慮,而且要組織學(xué)生展開充分的討論,把大家的觀點(diǎn)集中考慮,這樣非常有利于訓(xùn)練學(xué)生的歸納能力。

          二次函數(shù)教學(xué)反思2

            本節(jié)的學(xué)習(xí)內(nèi)容是在前面學(xué)過二次函數(shù)的概念和二次函數(shù)的圖像和性質(zhì)的基礎(chǔ)上,運(yùn)用圖像變換的觀點(diǎn)把二次函數(shù)的圖像經(jīng)過一定的平移變換,而得到二次函數(shù)的圖像。二次函數(shù)是初中階段所學(xué)的`最后一類最重要、圖像性質(zhì)最復(fù)雜、應(yīng)用難度最大的函數(shù),是學(xué)業(yè)達(dá)標(biāo)考試中的重要考查內(nèi)容之一。教材中主要運(yùn)用數(shù)形結(jié)合的方法從學(xué)生熟悉的知識入手進(jìn)行知識探究。這是教學(xué)發(fā)現(xiàn)與學(xué)習(xí)的常用方法,同學(xué)們應(yīng)注意學(xué)習(xí)和運(yùn)用。另外,在本節(jié)內(nèi)容學(xué)習(xí)中同學(xué)們還要注意“類比”前一節(jié)的內(nèi)容學(xué)習(xí),在對比中加強(qiáng)聯(lián)系和區(qū)別,從而更深刻的體會二次函數(shù)的圖像和性質(zhì)。

            通過本節(jié)課教學(xué),得出幾點(diǎn)體會:

            1、在教學(xué)中二次函數(shù)圖像的對稱軸,頂點(diǎn)坐標(biāo),開口方向尤其重要,必需特別強(qiáng)調(diào)。

            2、在探究中要積累研究問題的方法并積累經(jīng)驗(yàn),學(xué)生在前面已經(jīng)歷過探索、分析和建立兩個(gè)變量之間的關(guān)系的過程,學(xué)習(xí)了一次函數(shù)和反比例函數(shù),學(xué)會了用描點(diǎn)法作函數(shù)圖象并據(jù)此分析得出函數(shù)的性質(zhì)。我們可以把研究這些問題的方法應(yīng)用于研究二次函數(shù)的圖象和性質(zhì),并據(jù)此形成研究問題的基本方法。

            3、要使課堂真正成為學(xué)生展示自我的舞臺,還學(xué)生課堂學(xué)習(xí)的主體地位,教師要把激發(fā)學(xué)生學(xué)習(xí)熱情和獲得學(xué)習(xí)能力放在教學(xué)首位,為學(xué)生提供展示自己聰明才智的機(jī)會,使課堂真正成為學(xué)生展示自我的舞臺。充分利用合作交流的形式,能使教師發(fā)現(xiàn)學(xué)生分析問題解決問題的獨(dú)到見解以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué)。但在復(fù)習(xí)與練習(xí)的過程中,我發(fā)現(xiàn)學(xué)生存在著這樣幾個(gè)問題。

            本節(jié)課,我合理、充分利用了多媒體教學(xué)的手段,利用powerpoint,《幾何畫板》這兩種軟件制作了課件,特別是《幾何畫板》軟件的應(yīng)用,畫出了標(biāo)準(zhǔn)、動畫形式的二次函數(shù)的`圖像,讓抽象思維不強(qiáng)的學(xué)生,更加形象的結(jié)合圖形,分析說出二次函數(shù)的有關(guān)性質(zhì),充分體現(xiàn)了“數(shù)形結(jié)合”的數(shù)學(xué)思想。為了突出重點(diǎn),攻破難點(diǎn),我要求學(xué)生“先觀察后思考”、“先做后說”、“先討論后總結(jié)”,“師生共做”充分體現(xiàn)了教學(xué)過程中以學(xué)生為主體,老師起主導(dǎo)作用的教學(xué)原則。本節(jié)課,讓學(xué)生有觀察,有思考,有討論,有練習(xí),充分調(diào)動了學(xué)生的學(xué)習(xí)興趣,從而為高效率、高質(zhì)量地上好這一堂課作好了充分的準(zhǔn)備。

          二次函數(shù)教學(xué)反思3

            二次函數(shù)是學(xué)生學(xué)習(xí)了正比例函數(shù),一次函數(shù)和反比例函數(shù)以后進(jìn)一步學(xué)習(xí)函數(shù)知識,是函數(shù)知識螺旋發(fā)展的一個(gè)重要環(huán)節(jié),二次函數(shù)是描述變量之間關(guān)系的重要的數(shù)學(xué)模型,它既是其他學(xué)科研究時(shí)所采用的重要方法之一,也是某些簡單變量最優(yōu)化問題的數(shù)學(xué)模型。和一次函數(shù),反比例函數(shù)一樣,它也是一種非;镜某醯群瘮(shù),對二次函數(shù)的研究將為學(xué)生進(jìn)一步學(xué)習(xí)函數(shù),體會函數(shù)的思想奠定基礎(chǔ)和積累經(jīng)驗(yàn)。

            本節(jié)課的具體內(nèi)容是讓學(xué)生理解二次函數(shù)的概念,會判斷一個(gè)函數(shù)是否是二次函數(shù),并能夠用二次函數(shù)的一般形式解決一些問題。為此,我先帶領(lǐng)學(xué)生復(fù)習(xí)了什么是一次函數(shù),然后設(shè)計(jì)具體的問題情境讓學(xué)生自己“推導(dǎo)”出一個(gè)二次函數(shù),并觀察、總結(jié)它與一次函數(shù)有什么不同。在此基礎(chǔ)上,逐步歸納出二次函數(shù)的一般解析式:y=ax+bx+c(a,b,c是常數(shù),a≠0)。最后,通過隨堂練習(xí)鞏固二次函數(shù)的概念并解決一些簡單的數(shù)學(xué)問題。

            我個(gè)人以為,本節(jié)課的成功之處是:

            教學(xué)時(shí),通過實(shí)例引入二次函數(shù)的概念,讓學(xué)生明確二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型,通過學(xué)習(xí)求一些簡單的實(shí)際問題中二次函數(shù)的解析式,大部分學(xué)生重視了二次函數(shù)概念的`形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗(yàn)從問題出發(fā)到列二次函數(shù)解析式的過程,體驗(yàn)用函數(shù)思想去描述,研究變量之間變化規(guī)律的意義。讓學(xué)生終生受用的思考方法,使學(xué)生的思維水平有所提高。這樣不僅提高了學(xué)生獨(dú)立發(fā)現(xiàn)問題、解決問題的能力,避免學(xué)習(xí)落入程式化的窠臼,而且也讓學(xué)生體驗(yàn)到了成功的快樂。

          二次函數(shù)教學(xué)反思4

            本節(jié)的學(xué)習(xí)內(nèi)容是在前面學(xué)過二次函數(shù)的概念和二次函數(shù)y=ax2、y=ax2+h、y=a(x-h)2的圖像和性質(zhì)的基礎(chǔ)上,運(yùn)用圖像變換的觀點(diǎn)把二次函數(shù)y=ax2的圖像經(jīng)過一定的平移變換,而得到二次函數(shù)y=a(x-h)2+k (h≠0,k≠0)的圖像。二次函數(shù)是初中階段所學(xué)的最后一類最重要、圖像性質(zhì)最復(fù)雜、應(yīng)用難度最大的函數(shù),是學(xué)業(yè)達(dá)標(biāo)考試中的重要考查內(nèi)容之一。教材中主要運(yùn)用數(shù)形結(jié)合的方法從學(xué)生熟悉的知識入手進(jìn)行知識探究。這是教學(xué)發(fā)現(xiàn)與學(xué)習(xí)的常用方法,同學(xué)們應(yīng)注意學(xué)習(xí)和運(yùn)用。另外,在本節(jié)內(nèi)容學(xué)習(xí)中同學(xué)們還要注意 “類比”前幾節(jié)的內(nèi)容學(xué)習(xí),在對比中加強(qiáng)聯(lián)系和區(qū)別,從而更深刻的體會二次函數(shù)的圖像和性質(zhì)。

            通過本節(jié)課教學(xué),得出幾點(diǎn)體會:

            1、在教學(xué)中二次函數(shù)圖像的對稱軸,頂點(diǎn)坐標(biāo),開口方向尤其重要,必需特別強(qiáng)調(diào)。

            2、在探究中要積累研究問題的方法并積累經(jīng)驗(yàn),學(xué)生在前面已經(jīng)歷過探索、分析和建立兩個(gè)變量之間的關(guān)系的過程,學(xué)習(xí)了一次函數(shù)和反比例函數(shù),學(xué)會了用描點(diǎn)法作函數(shù)圖象并據(jù)此分析得出函數(shù)的性質(zhì)。我們可以把研究這些問題的方法應(yīng)用于研究二次函數(shù)的圖象和性質(zhì),并據(jù)此形成研究問題的基本方法。

            3、要使課堂真正成為學(xué)生展示自我的舞臺。

            還學(xué)生課堂學(xué)習(xí)的主體地位,教師要把激發(fā)學(xué)生學(xué)習(xí)熱情和獲得學(xué)習(xí)能力放在教學(xué)首位,為學(xué)生提供展示自己聰明才智的機(jī)會,使課

            堂真正成為學(xué)生展示自我的舞臺。充分利用合作交流的形式,能使教師發(fā)現(xiàn)學(xué)生分析問題解決問題的獨(dú)到見解以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué)。但在復(fù)習(xí)與練習(xí)的過程中,我發(fā)現(xiàn)學(xué)生存在著這樣幾個(gè)問題。

            1、某些記憶性的知識沒記住。

            2、學(xué)生稍遇到點(diǎn)難題就失去做下去的信心。題目較長時(shí)就不愿意仔細(xì)讀,從而失去讀下去的勇氣

            3、學(xué)生的識圖能力、讀題能力與分析問題、解決問題的能力較弱。

            4、解題過程寫得不全面,丟三落四的`現(xiàn)象嚴(yán)重。

            針對上述問題,需要采取的措施與方法是:

            1、根據(jù)實(shí)際情況,對于中考升學(xué)有希望的學(xué)生利用課余時(shí)間做好他們的思想工作。并對他們進(jìn)行面對面的單獨(dú)輔導(dǎo),增強(qiáng)他們的自信心,以此來提高他們的數(shù)學(xué)成績。

            2、結(jié)合自己的學(xué)習(xí)經(jīng)驗(yàn)對他們進(jìn)行學(xué)法指導(dǎo)和解題技巧的指導(dǎo)。

            3、根據(jù)不同的學(xué)生情況,搜集典型題讓他們單獨(dú)做,并給予及時(shí)的輔導(dǎo)與矯正。

            4、與其它任課教師聯(lián)手一起想對策,指導(dǎo)學(xué)生讀題的方法與分析問題,解決問題的方法。

            5、無論是做練習(xí)還是考試之前,都告訴學(xué)生要認(rèn)真仔細(xì)的讀題,從圖形中獲取信息。

          二次函數(shù)教學(xué)反思5

            復(fù)習(xí)目標(biāo):

            知識目標(biāo):

            1、了解二次函數(shù)解析式的三種表示方法,拋物線的開口方向、頂點(diǎn)坐標(biāo)、對稱軸以及拋物線與對稱軸的交點(diǎn)坐標(biāo)等;

            2、一元二次方程與拋物線的關(guān)系.

            3、利用二次函數(shù)解決實(shí)際問題。

            技能目標(biāo):

            培養(yǎng)學(xué)生運(yùn)用函數(shù)知識與幾何知識解決數(shù)學(xué)綜合題和實(shí)際問題的能力。

            情感目標(biāo):

            1、通過問題情境和探索活動的創(chuàng)設(shè),激發(fā)學(xué)生的學(xué)習(xí)興趣;

            2.讓學(xué)生感受到數(shù)學(xué)與人類生活的密切聯(lián)系,體會到學(xué)習(xí)數(shù)學(xué)的樂趣。

            復(fù)習(xí)重、難點(diǎn):函數(shù)綜合題型

            復(fù)習(xí)方法:合作交流

            復(fù)習(xí)過程:

            一、知識梳理

            1、二次函數(shù)解析式的三種表示方法:

           。1)頂點(diǎn)式:(2)交點(diǎn)式:(3)一般式:

            2、填表:

            拋物線對稱軸頂點(diǎn)坐標(biāo)開口方向

            y=ax2

            當(dāng)a>0時(shí),

            開口

            當(dāng)a<0時(shí),

            開口

            Y=ax2+k

            Y=a(x-h)2

            y=a(x-h)2+k

            Y=ax2+bx+c

            3、二次函數(shù)y=ax2+bx+c,當(dāng)a>0時(shí),在對稱軸右側(cè),y隨x的增大而,在對稱軸左側(cè),y隨x的增大而;當(dāng)a<0時(shí),在對稱軸右側(cè),y隨x的增大而,在對稱軸左側(cè),y隨x的增大而

            4、拋物線y=ax2+bx+c,當(dāng)a>0時(shí)圖象有最點(diǎn),此時(shí)函數(shù)有最值;當(dāng)a<0時(shí)圖象有最點(diǎn),此時(shí)函數(shù)有最值

            自評分(每空4分,共100分)

            二、探究、討論、練習(xí)(先獨(dú)立思考,再分小組討論,最后反饋信息)(屏幕顯示)

            已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,試判斷下面各式的符號:

            (1)abc(2)b2-4ac(3)2a+b(4)a+b+c

           。ㄉ项}主要考查學(xué)生對二次函數(shù)的圖象、性質(zhì)的掌握情況:b2-4ac的符號看拋物線與x軸的交點(diǎn)情況;2a+b看對稱軸的位置;而a+b+c的符號要看x=1時(shí)y的值)

            2、已知拋物線y=x2+(2k+1)x-k2+k

            (1)求證:此拋物線與x軸總有兩個(gè)不同的交點(diǎn);

           。2)設(shè)A(x1,0)和B(x2,0)是此拋物線與x軸的兩個(gè)交點(diǎn),且滿足x12+x22=-2k2+2k+1,①求拋物線的解析式

           、诖藪佄锞上是否存在一點(diǎn)P,使△PAB的面積等于3,若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由。

            (此題主要考查拋物線與一元方程的根的判別式、根與系數(shù)的關(guān)系的聯(lián)系,以及函數(shù)與幾何知識的.綜合)

            三、歸納小結(jié):

            提問:通過本節(jié)課的練習(xí),你得到了什么?

            四、用數(shù)學(xué)(利用二次函數(shù)解決實(shí)際問題)

            一位運(yùn)動員在距籃下4米處跳起投籃,球運(yùn)行的路線是拋物線,當(dāng)球運(yùn)行的水平距離為2.5米時(shí),達(dá)到的最大高度是3.5米,然后準(zhǔn)確落入籃圈,已知籃球中心到地面的距離為3.05米,

            (1)根據(jù)題意建立直角坐標(biāo)系,并求出拋物線的解析式。

           。2)該運(yùn)動員的身高是1.8米,在這次跳投中,球在頭頂上方0.25米,問:球出手時(shí),他跳離地面的高度是多少?

           。ù祟}把學(xué)生熟悉的運(yùn)動員投籃問題與二次函數(shù)結(jié)合在一起,溶入了一定的生活背景,使學(xué)生產(chǎn)生數(shù)學(xué)學(xué)習(xí)興趣;同時(shí)培養(yǎng)了學(xué)生把實(shí)際問題抽象成數(shù)學(xué)模型的能力。)

            五、拓展提升(供學(xué)有余力的學(xué)生做):(屏幕顯示)

            已知拋物線y=x2+(1-2a)x+a2(a≠0)與x軸交于兩點(diǎn)A(x1,0),B(x2,0),(x1≠x2)

           。1)求a的取值范圍,并證明A、B兩點(diǎn)都在原點(diǎn)的左側(cè);

           。2)若拋物線與y軸交于點(diǎn)C,且OA+OB=OC-2,求a的值。

            課堂反思:以前的復(fù)習(xí)課總是寫滿幾塊小黑板,弄得手上全是粉筆末,一節(jié)課下來,光是翻轉(zhuǎn)小黑板就把自己搞得迷迷糊糊,并且學(xué)生還喊道:看不清楚。現(xiàn)在好了,利用多媒體,可以把要講的知識點(diǎn)、學(xué)生要做的練習(xí)毫不含糊地全部展示給學(xué)生,確實(shí)做到了高容量、大密度。感覺很好。

          二次函數(shù)教學(xué)反思6

            這節(jié)課是在學(xué)完正、反比例、一次函數(shù),認(rèn)識了一元二次方程之后的二次函數(shù)的第一節(jié)課,從課本的體系來看,這節(jié)課明顯是要讓學(xué)生明白什么是二次函數(shù),能區(qū)別二次函數(shù)與其他函數(shù)的不同,能深刻理解二次函數(shù)的一般形式,并能初步理解實(shí)際問題中對定義域的限制。

            但是如果光從這些知識點(diǎn)上來講這節(jié)課,其實(shí)很簡單,學(xué)生在原有知識的儲備基礎(chǔ)上很容易遷移和接受這些知識,那么這節(jié)課還有什么好設(shè)計(jì)的呢?

            重新思索教材的編寫意圖,發(fā)現(xiàn)課本這部分內(nèi)容大部分篇幅是在講三個(gè)實(shí)際問題,由此引出了二次函數(shù),我才意識其實(shí)這節(jié)課的重點(diǎn)實(shí)際上應(yīng)該放在“經(jīng)歷探索和表示二次函數(shù)關(guān)系的過程,獲得用二次函數(shù)表示變量之間關(guān)系的體驗(yàn),從而形成定義”上,有了這個(gè)認(rèn)識,一切變得簡單了!

            整節(jié)課的流程可以這樣概括:學(xué)生感興趣的簡單實(shí)際問題——引出學(xué)過的一次函數(shù)——復(fù)習(xí)學(xué)過的所有函數(shù)形式——設(shè)問:有沒有新的函數(shù)形式呢?——探索新的問題——形成關(guān)系式——是函數(shù)嗎?——是學(xué)過的函數(shù)嗎?——探索出新的函數(shù)形式——概括新函數(shù)形式的特點(diǎn)——將特點(diǎn)公式化——形成二次函數(shù)定義——有練習(xí)鞏固定義特點(diǎn)——返回實(shí)際問題討論實(shí)際問題對自變量的限制——提出新的問題,深入討論——課堂的小結(jié),這樣設(shè)計(jì)一氣呵成,感覺上無拖沓生硬之處,最關(guān)鍵的是我認(rèn)為這符合學(xué)生的基本認(rèn)知規(guī)律,是容易讓學(xué)生理解和接受的。

            對于實(shí)際問題的選擇,我將4個(gè)問題整和于同一個(gè)實(shí)際背景下,這樣設(shè)計(jì)既能引起學(xué)生興趣,也盡量減少學(xué)生審題的時(shí)間,顯得非常有層次性,這些實(shí)際問題貫穿整個(gè)課堂的始終,使整個(gè)課堂有渾然天成的感覺。

            對于練習(xí)的設(shè)計(jì),仍然采取了不重復(fù)的原則性,盡量做到每題針對一個(gè)問題,并進(jìn)行及時(shí)的小結(jié),也遵循了從開放到封閉的原則,達(dá)到了良好的效果。

            對于最后討論題的設(shè)計(jì)和提出,是我在進(jìn)行了整個(gè)一章的單元備課后發(fā)現(xiàn),我們其實(shí)對二次函數(shù)的最值問題是不講的,但是不講并不代表一點(diǎn)都不會涉及到,其中用到的思想方法還是相當(dāng)重要的,在圖象的觀察中也具有了重要的地位,再加上這個(gè)問題在進(jìn)行了前面的`實(shí)際問題的解答之后是呼之欲出的:多種樹——想提高產(chǎn)量——多種幾棵好呢?,所以我設(shè)計(jì)了這個(gè)探索性的問題:假如你是果園的主人,你準(zhǔn)備多種幾棵?注意這里我并沒有提出最大最小值的問題,但是所有的學(xué)生都能理解到,這是數(shù)學(xué)的魅力。這個(gè)問題的提出是整節(jié)課的一個(gè)高潮和精華,是學(xué)生學(xué)完二次函數(shù)定義之后,綜合利用函數(shù)的基本知識,代數(shù)式的知識和一元二次方程的知識進(jìn)行的思考,因而他們的想法和說法,不論對錯(cuò),不論全面還是有所偏頗,其中都涉及到了重要的數(shù)學(xué)思想方法,而這些恰恰是非常重要的。事實(shí)證明學(xué)生的思維真的是非;钴S的,你要你給了足夠的空間,他們總能從各方各面進(jìn)行思考和解釋,我也從中看到了他們智慧的火花,這是很令人欣慰的。

          二次函數(shù)教學(xué)反思7

            這周二聽了代老師的一節(jié)數(shù)學(xué)課---二次函數(shù)的圖像,收獲頗多。

            上課一開始,就對所學(xué)過的函數(shù)進(jìn)行了總結(jié)復(fù)習(xí),使學(xué)生在畫二次函數(shù)圖象時(shí)列表、描點(diǎn)、連線找得很快、很準(zhǔn)確。在講解拋物線的概念時(shí),利用多媒體直觀展示了拋物線的特征,激發(fā)了學(xué)生的學(xué)習(xí)興趣。引導(dǎo)學(xué)生自主進(jìn)行觀察、發(fā)現(xiàn)、歸納、反思等數(shù)學(xué)活動,得出二次函數(shù)的圖象和性質(zhì),在教學(xué)中,由學(xué)生自己動手,通過列表、描點(diǎn)、連線繪制出二次函數(shù)的圖象,培養(yǎng)了學(xué)生動手動腦的習(xí)慣和綜合分析歸納的能力。

            小組合作學(xué)習(xí),發(fā)現(xiàn)其中的規(guī)律。鼓勵(lì)學(xué)生相互交流自己的想法,并說明理由。如在畫出圖象后,提問學(xué)生“我們可以從圖中觀察到什么”。滲透了數(shù)形結(jié)合的思想,培養(yǎng)了學(xué)生觀察、綜合分析的.能力,增加了學(xué)習(xí)的自信心和學(xué)習(xí)的能力。

            老師適時(shí)地總結(jié)、深化,提高認(rèn)識水平。老師在不斷地總結(jié)中滲透數(shù)學(xué)思想方法,抓住時(shí)機(jī)培養(yǎng)學(xué)生思維的深刻性。如本節(jié)課由函數(shù)的解析式畫出函數(shù)的圖象,總結(jié)出函數(shù)的性質(zhì),再利用所學(xué)知識解決有關(guān)問題。在師生的共同討論中,深化所學(xué)知識,培養(yǎng)學(xué)生具備反省思維的能力。

          二次函數(shù)教學(xué)反思8

            二次函數(shù)的應(yīng)用本身是學(xué)習(xí)二次函數(shù)的圖象與性質(zhì)后,檢驗(yàn)學(xué)生應(yīng)用所學(xué)知識解決實(shí)際問題能力的一個(gè)綜合考查。新課標(biāo)中要求學(xué)生能通過對實(shí)際問題的情境的分析確定二次函數(shù)的'表達(dá)式,體會其意義,能根據(jù)圖象的性質(zhì)解決簡單的實(shí)際問題。 本節(jié)課充分運(yùn)用導(dǎo)學(xué)提綱,教師提前通過一系列問題串的設(shè)置,引導(dǎo)學(xué)生課前預(yù)習(xí),在課堂上通過對一系列問題串的解決與交流, 讓學(xué)生通過掌握 求面積最大這一類題,學(xué)會用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問題。

            教材中設(shè)計(jì)先探索最大利潤問題,對九年級學(xué)生來說,在學(xué)習(xí)了一次函數(shù)和二次函數(shù)圖象與性質(zhì)以后,對函數(shù)的思想已有初步認(rèn)識,對分析問題的方法已會初步模仿,能識別圖象的增減性和最值,但在變量超過兩個(gè)的實(shí)際問題中,還不能熟練地應(yīng)用知識解決問題,而面積問題學(xué)生易于理解和接受,故而在這兒作此調(diào)整,為求解最大利潤等問題奠定基礎(chǔ)。從而進(jìn)一步培養(yǎng)學(xué)生利用所學(xué)知識構(gòu)建數(shù)學(xué)模型,解決實(shí)際問題的能力,這也符合新課標(biāo)中知識與技能呈螺旋式上升的規(guī)律。所以在例題的處理中適當(dāng)?shù)慕档土颂荻龋寣W(xué)生思維有一個(gè)拓展的空間,也有收獲快樂 和成就感。在訓(xùn)練的過程中,通過學(xué)生的獨(dú)立思考與小組合作探究相結(jié)合,使學(xué)生的分析能力、表達(dá)能力及思維能力都得到訓(xùn)練和提高。同時(shí)也注重對解題方法與解題 模式的歸納與總結(jié),并適當(dāng)?shù)貪B透轉(zhuǎn)化、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法。

            就整節(jié)課看,學(xué)生的積極性得以充分調(diào)動,特別是學(xué)困生,在獨(dú)立思考和小組合作中改變以往的配角地位,也能積極參與到課堂學(xué)習(xí)活動中,今后繼續(xù)發(fā)揚(yáng)從學(xué)生出發(fā),從學(xué)生的需要出發(fā),把問題梯度降低,設(shè)計(jì)讓學(xué)生在能力范圍內(nèi)掌握新知識,有了足夠的熱身運(yùn)動之后再去拓展延伸。

          二次函數(shù)教學(xué)反思9

            二次函數(shù)對學(xué)生來講,既是難點(diǎn)又是重點(diǎn),通過我對這一章的教學(xué),讓我學(xué)到很多道理和教學(xué)方法。下面是我對二次函數(shù)的復(fù)習(xí)課的一些反思感受:

            首先,我認(rèn)為在課堂上,我對知識的掌握還是有一定的欠缺,把二次函數(shù)用自己的眼光和感受想象的太簡單,但是對于學(xué)生而言,這又是一個(gè)重點(diǎn),尤其是一個(gè)難點(diǎn)。所以我課堂上有的習(xí)題深度沒有掌握好,沒有做到面向全體。

            其次,本節(jié)課體現(xiàn)的是分層教學(xué),而我只是在后面的比賽中簡單的體現(xiàn)分層,對于提問中得分層,習(xí)題中的分層還是做的不夠好,這說明我對于分層教學(xué)的這種方法還是有待于進(jìn)一步的'提高,應(yīng)該真正的站在學(xué)生的角度來分層。

            第三,課堂上的語言不夠精辟,尤其是評價(jià)性的話語很少,很單調(diào)。沒有做到讓學(xué)生為我的一句話而振奮,沒有因?yàn)闉榱藸幍梦业囊痪湓挾煤米鲱}等等,這是我一直以來欠缺的一個(gè)重要點(diǎn)。

            那么針對以上幾點(diǎn),我從自己的角度思考,收獲了以下這些:

            1.上課之前一定要反復(fù)的推敲,琢磨課本,找出本節(jié)課知識的“靈魂”,然后站在學(xué)生的角度,仔細(xì)研究,如何講授學(xué)生們才能愿意聽,才能聽得明白。尤其不能把學(xué)生想像的水平很高,不是不自信,而是不能把學(xué)生逼到“危險(xiǎn)之地”,以免打擊自尊心,熄滅剛剛點(diǎn)燃的興趣之光。真正做到“低起點(diǎn)”。

            2.既然選擇和實(shí)施了分層教學(xué),就應(yīng)該多下功夫去琢磨,去進(jìn)行它。既然是分層就應(yīng)該把它做到“順其自然”,而不僅僅是一種形式。在分層的同時(shí)應(yīng)該找到一個(gè)點(diǎn),就是說,這個(gè)點(diǎn)上的問題是承上啟下的,是應(yīng)該全班都能夠掌握的。對于尖子生,不能在課堂上想讓他們吃飽,對于他們應(yīng)該在課下,或者是采用小紙條的方法單獨(dú)來測試,不能為了他們的能力把題目難度定的過高。再者,分層應(yīng)該體現(xiàn)在一節(jié)課的所有環(huán)節(jié),例如,在提問時(shí),對于一個(gè)問題應(yīng)該分層次來提,來回答。

            3.應(yīng)該及時(shí)地,迅速的提高自己的言語水平。

            一堂課的精彩與否,教師的課堂語言也是很重要的一個(gè)方面,例如一節(jié)課的講授過程,或者是對于學(xué)生的評價(jià)等等。

            督促自己多讀書,多練習(xí),以豐富自己的語言。

            4.最后,我覺得自己真的需要多學(xué)習(xí),多見識,這樣才能提高,才能迅速的提高。對于自己的優(yōu)勢,我也看到了,那就是我的教學(xué)之路很長,很多方法,很多思路都有時(shí)間,有條件去嘗試,所以在以后的工作中要多動腦,多為學(xué)生著想。

            俗話說“天下無難事,只怕有心人”,所以只要我認(rèn)真的付出,認(rèn)真的思考,我想我的明天會是美好的。

          二次函數(shù)教學(xué)反思10

            這節(jié)課是人教版九年級數(shù)學(xué)下冊的一節(jié)探究課。在教學(xué)中我采用了體驗(yàn)探究的教學(xué)方式,在教師的配合引導(dǎo)下,讓學(xué)生自己動手作圖,觀察、歸納出二次函數(shù)的性質(zhì),體驗(yàn)知識的形成過程,力求體現(xiàn)"主體參與、自主探索、合作交流、指導(dǎo)引探"的教學(xué)理念。

            整個(gè)教學(xué)過程主要分為三部分:

            第一部分是前置性作業(yè),前置作業(yè)是前一天發(fā)給學(xué)生的,主要涉及如何作圖、一次函數(shù)和反比例函數(shù)的性質(zhì)等問題。我的設(shè)計(jì)目的是讓學(xué)生在復(fù)習(xí)這些知識的過程中體會從函數(shù)圖像來研究函數(shù)性質(zhì)。應(yīng)該說這樣設(shè)計(jì)既讓學(xué)生復(fù)習(xí)了舊知又使他們體會到如何研究函數(shù),從哪些方面研究函數(shù),從思維層面鍛煉了學(xué)生的探究能力。

            第二部分是學(xué)習(xí)探究,探求活動前先讓一名學(xué)生讀了學(xué)習(xí)目標(biāo),讓大家?guī)е繕?biāo)去探究。探究活動一是讓學(xué)生在坐標(biāo)紙上畫出二次函數(shù)y=ax2的圖象。畫圖的過程包括列表、描點(diǎn)、連線。列表過程是我引導(dǎo)學(xué)生取點(diǎn)的,其間我引導(dǎo)大家要明確取點(diǎn)注意的事項(xiàng),比如代表性、易操作性。這樣學(xué)生在下一個(gè)環(huán)節(jié)就能游刃有余。學(xué)生在我的引導(dǎo)下順利地畫出了函數(shù)的圖象。緊接著我讓學(xué)生按照學(xué)案的要求自主探討當(dāng)a>0時(shí)函數(shù)y=ax2的性質(zhì)。探究活動二是獨(dú)立畫出函數(shù)y=ax2的圖象,然后是自主探討當(dāng)a<0時(shí)函數(shù)y=ax2的性質(zhì)。探討函數(shù)的性質(zhì)主要從開口方向、對稱軸、增減性、頂點(diǎn)坐標(biāo)和最值方面入手,讓學(xué)生從特殊函數(shù)來歸納總結(jié)一般函數(shù)的性質(zhì)。應(yīng)該說探究活動二在活動一的基礎(chǔ)上讓學(xué)生鍛煉了自我學(xué)習(xí)的能力,學(xué)生們完成的很好。探索活動三是小組合作活動。觀察自己畫出的兩個(gè)圖象,它們代表函數(shù) y=ax2的兩種情況,找出a的符號不同時(shí)他們的相同點(diǎn)、不同點(diǎn)和聯(lián)系點(diǎn)。這個(gè)環(huán)節(jié)能充分發(fā)揮小組合作的優(yōu)勢,讓學(xué)生在談?wù)撝畜w會分類思想。小組討論完畢后我讓學(xué)生展示他們的成果,大部分學(xué)生躍躍欲試,他們討論的很全面,出乎我的預(yù)料。這里面還有個(gè)知識點(diǎn)我是用幾何畫板演示的,就是通過改變a的值讓學(xué)生們觀察圖象的開口方向和開口寬度。幾何畫板在此起到了突破難點(diǎn)的作用,讓我真正體會到了掌握幾何畫板對自己的教學(xué)是多么的有利。第三部分是課堂檢測。最后五分鐘時(shí)我讓學(xué)生們獨(dú)立完成課堂檢測部分題目。課堂檢測共出了四個(gè)小題(基礎(chǔ)題)一個(gè)應(yīng)用題(選做題),下課鈴聲響了,大部分的同學(xué)還沒有完成選做題,所以我就讓同桌交換試卷,公布前四個(gè)基礎(chǔ)題的答案。從當(dāng)堂的反饋來看,絕大多數(shù)同學(xué)能掌握本節(jié)課的知識,達(dá)到了學(xué)習(xí)目標(biāo)中的要求。

            本課的優(yōu)點(diǎn)主要包括:

            1、教態(tài)自然,能注重身體語言的作用,聲音洪亮,提問具有啟發(fā)性。

            2、教學(xué)目標(biāo)明確、思路清晰,注重學(xué)生的自我學(xué)習(xí)培養(yǎng)和小組合作學(xué)習(xí)的落實(shí)。

            3、能運(yùn)用現(xiàn)代化的教學(xué)手段教學(xué),尤其是能用幾何畫板等軟件突破重難點(diǎn)。

            本課的不足之處表現(xiàn)在:

            1、知識的生成過程體現(xiàn)的不夠具體。在活動一中,雖然引導(dǎo)學(xué)生選點(diǎn)和列表,但是沒有在黑板上演示作圖的過程,雖然說明白了選點(diǎn)的注意事項(xiàng)但是學(xué)生還是被動的接受,他們不一定能理解為什么要選那個(gè)點(diǎn)。

            2、作圖的過程沒必要放到課堂上來?梢允孪仍谇爸米鳂I(yè)中讓學(xué)生作圖,在課堂上讓學(xué)生匯報(bào)作圖中遇到的困難,這樣教師再去訂正,效果要好很多。有時(shí)候就是要讓學(xué)生經(jīng)歷“錯(cuò)誤”的過程,這樣他們才會懂。正所謂“我聽到的`,我會忘記;我見到的,我會記。晃易鲞^的,我會理解

            3、課堂上講的太多。有些過程,讓學(xué)生自主觀察總結(jié)是完全能收到好的效果的,但是我都替學(xué)生總結(jié)了,學(xué)生還是被動的接受。其實(shí)這還是思想的問題,說明我沒有真的放開手。真正讓學(xué)生有了空間,他們也會給我們很大的驚喜。

            4、學(xué)生在回答問題的過程中我老是打斷學(xué)生。提問一個(gè)問題,學(xué)生說了一半,我就迫不及待地引導(dǎo)他說出下一半,有的時(shí)候是我替學(xué)生說了,這樣學(xué)生的思路就被我打斷了。破壞學(xué)生的思路是我們教師最大的毛病,此頑疾不除,教學(xué)質(zhì)量難以保證。

            5、合作學(xué)習(xí)的有效性不夠。其實(shí)在演示幾何畫板的過程中,學(xué)生在a>0的情況下能得到a越大開口越小,a<0的情況下a越小開口越大。但是綜合起來學(xué)生就困難的多了。這個(gè)時(shí)候不妨讓大家小組討論完成知識的總結(jié)。有這樣一種說法:你我各一個(gè)蘋果,交換之后,你我還是一個(gè)蘋果;你我各有一種思想,交換之后,你我卻有了兩種思想。這很形象地說出了合作學(xué)習(xí)的好處。教師把學(xué)習(xí)的主動權(quán)交給學(xué)生,把思維的過程還給學(xué)生,問題在分組討論中得以共同解決。只有真正把自主、探究、合作的學(xué)習(xí)方式落到實(shí)處,才能培養(yǎng)學(xué)生成為既有創(chuàng)新能力,又能適應(yīng)現(xiàn)代社會發(fā)展的公民。

          二次函數(shù)教學(xué)反思11

            元月14日,高港區(qū)數(shù)學(xué)骨干教師培訓(xùn)班成員在我校組織了一次集體備課。其中一組成員討論了由我主備的二次函數(shù)圖象和性質(zhì)的復(fù)習(xí)課,他們提出了許多寶貴的建議,在經(jīng)過幾天的精心修改后,我于元月21日在我校多功能教室上了這堂公開課。本節(jié)課的復(fù)習(xí)目標(biāo)是:①能根據(jù)已知條件確定二次函數(shù)的解析式、開口方向、頂點(diǎn)和對稱軸。②理解并能運(yùn)用二次函數(shù)的圖象和性質(zhì)解決有關(guān)問題。本節(jié)課的重、難點(diǎn)是:二次函數(shù)圖象和性質(zhì)的綜合應(yīng)用。我立足于學(xué)生自主復(fù)習(xí),師生合作探究的形式完成本節(jié)課的教學(xué)任務(wù)。

            首先我讓學(xué)生課前完成二次函數(shù)圖象和性質(zhì)的基礎(chǔ)訓(xùn)練,促使學(xué)生對二次函數(shù)圖象和性質(zhì)的知識點(diǎn)全面梳理和掌握。課上我用投影儀檢查一名學(xué)生完成課前復(fù)習(xí)情況,其他學(xué)生交換批改,發(fā)現(xiàn)最后一小條有部分學(xué)生有問題,我及時(shí)評講分析,幫助學(xué)生解決。

            接著,師生合作探究本節(jié)課的例題。本例是用已知拋物線解決7個(gè)問題,這7個(gè)問題是我從全國20xx年中考試題中整理出來的,它代表了中考的方面。問題1是用頂點(diǎn)式求出拋物線的解析式再通過解析式求與坐標(biāo)軸的交點(diǎn),通過觀察圖象我又提出了x為何值時(shí),y>0,y<0?以及圖中△AOC與△DCB有何關(guān)系,進(jìn)一步培養(yǎng)學(xué)生發(fā)現(xiàn)問題解決問題的能力。問題2、問題3、問題4是拋物線的平移、軸對稱和旋轉(zhuǎn)的題目。主要是讓學(xué)生抓住拋物線的頂點(diǎn)和開口方向來完成。這種類型的題目也有少數(shù)同學(xué)從坐標(biāo)點(diǎn)的對稱角度來解決也是可行的,并且方便記憶,對于這兩種方法我讓學(xué)生作了及時(shí)的歸納小結(jié)。問題5和問題6是關(guān)于拋物線的最值問題。問題5是利用拋物線的對稱性解決三角形的周長最小的題目。學(xué)生通過作圖能獨(dú)立解決并求出點(diǎn)的坐標(biāo)。問題6是本節(jié)課的`重點(diǎn),它通過建立目標(biāo)函數(shù)解決四邊形面積的極值。本題目關(guān)鍵是引導(dǎo)學(xué)生如何設(shè)點(diǎn)的坐標(biāo),將四邊形的面積轉(zhuǎn)化成我們熟悉的三角形(或直角梯形)來建立函數(shù)關(guān)系式。通過這條題進(jìn)一步培養(yǎng)學(xué)生建立函數(shù)模型的思想。本題讓學(xué)生充分合作交流,最后,讓學(xué)生在自主探索中獲取新的知識。通過觀察圖象求出了四邊形的面積后,我又提出如何求△BCF的面積的最大值的問題,讓本題得到進(jìn)一步的升華,培養(yǎng)學(xué)生的創(chuàng)新思維。問題7是在拋物線上探求點(diǎn)存在性問題,引導(dǎo)學(xué)生先作出符合條件的平行四邊形,再判斷點(diǎn)是否在拋物線上,本題著重培養(yǎng)了學(xué)生數(shù)形結(jié)合的思想方法。

            這7個(gè)問題由淺入深,循序漸進(jìn)推出,符合學(xué)生的認(rèn)知規(guī)律,使學(xué)生對二次函數(shù)圖象和性質(zhì)有了進(jìn)一步的理解和提高。

            本節(jié)課完成后,我感到也有不足的地方:課堂容量稍有點(diǎn)偏大,學(xué)生沒有時(shí)間獨(dú)立完成作業(yè)。雖然我對每個(gè)問題及時(shí)小結(jié)、歸納,但沒有留一定時(shí)間讓學(xué)生整理消化。通過這堂公開課,我受益匪淺,感受頗多,讓我在如何備復(fù)習(xí)課,準(zhǔn)確把握重點(diǎn),突破難點(diǎn)方面有了很大的提高,同時(shí)在駕馭課堂能力方面有了很大的進(jìn)步。今后我將在如何提高有效課堂效率方面多下功夫,使自己教育教學(xué)(此文來自)水平更上一個(gè)臺階。

          二次函數(shù)教學(xué)反思12

            二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的'數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型。許多實(shí)際問題往往可以歸結(jié)為二次函數(shù)加以研究。本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過實(shí)例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡單的實(shí)際問題中二次函數(shù)的解析式和它的定義域。在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗(yàn)從問題出發(fā)到列二次函數(shù)解析式的過程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義。在教學(xué)中,我主要遇到了這樣幾個(gè)問題:

            1、關(guān)于能夠進(jìn)行整理變?yōu)檎降?式子形式判斷不準(zhǔn),主要是我自身對這個(gè)概念把握不是很清楚,通過這節(jié)課的教學(xué)過程,和各位老師的幫助知道,真正達(dá)到了教學(xué)相長的效果。

            2、在細(xì)節(jié)方面我還有很多的不足,比如,在二次函數(shù)的表示過程中,應(yīng)注意強(qiáng)調(diào)按自變量的降冪排列進(jìn)行整理,這類問題在今后的教學(xué)中,我會注意這些方面的教學(xué)。

            3、在變式訓(xùn)練的過程中要注意思考容量和密度以及效度的關(guān)系,注意教學(xué)安排的合理性。另外在教學(xué)語言的精煉方面我還有待加強(qiáng)。

          二次函數(shù)教學(xué)反思13

            一、背景說明

            這是九年級剛上完二次函數(shù)新課后的一堂復(fù)習(xí)課,本堂課的目的是通過用多種方法求二次函數(shù)的解析式,從而培養(yǎng)學(xué)生的一題多解能力及探索意識。

            二、探究與討論

            問題:已知二次函數(shù)的圖象過點(diǎn)(1,0),在y軸上的截距為3,對稱軸是直線x=2,求它的函數(shù)解析式。

            (給學(xué)生充分的思考時(shí)間)

            師:哪位同學(xué)能把解法說一下?

            生A:解:設(shè)二次函數(shù)解析式為y=ax2+bx+c,把(1,0),(0,3)代入,得

            a+b+c=0

            c=3

            又因?yàn)閷ΨQ軸是x=2,所以—b/2a=2

            所以得a+b+c=0

            c=3

            —b/2a=2

            解得a=1

            b=—4

            c=3

            所以所求解析式為y=x2—4x+3

            師:兩點(diǎn)代入二次函數(shù)一般式必定出現(xiàn)不定式,能想到對稱軸,從而以三元一次方程組解得a,b,c,不錯(cuò)!除此方法外,還有沒有其他方法,大家可以相互討論一下。

            (同學(xué)們開始討論,思考)

            生B:我認(rèn)為此題可用頂點(diǎn)式,即設(shè)二次函數(shù)解析式為y=a(x—2)2+k,把(1,0),(0,3)代入,得

            a+k=0

            4a+k=3

            解得a=1

            k=—1

            故所求二次函數(shù)的解析式為y=(x—2)2—1,即y=x2—4x+3

            師:非常好。那還有沒有其他方法,請大家再思考一下。

           。▽W(xué)生沉默一會兒,有人舉手發(fā)言)

            生C:因?yàn)閷ΨQ軸是直線x=2,在y軸上的截距為3,我認(rèn)為該二次函數(shù)解析式可設(shè)為y=ax2—4ax+3,在把(1,0)代入得a—4a+3=0,解得a=1,所以所求解析式為y=x2—4x+3

            師:設(shè)得巧妙,這個(gè)函數(shù)解析式只含一個(gè)字母,這給運(yùn)算帶來很大方便,很好,很善于思考。大家再想想看,是否還有其他解題途徑。

           。▽W(xué)生們又挖空心思地思考起來,終于有一學(xué)生打破沉寂)

            生D:由于圖象過點(diǎn)(1,0),對稱軸是直線x=2,故得與x軸的另一交點(diǎn)為(3,0),所以可用兩根式設(shè)二次函數(shù)解析式為y=a(x—1)(x—3),再把(0,3)代入,得a=1,

            所以二次函數(shù)解析式為y=(x—1)(x—3),即y=x2—4x+3

            (同學(xué)們給生D以熱烈的掌聲)

            師:函數(shù)本身與圖形是不可分割的`,能數(shù)形結(jié)合,非常不錯(cuò),用兩根式解此題,非常獨(dú)到。

           。ㄖ链讼抡n時(shí)間快到,原先設(shè)計(jì)好的三題只完成一題,但看到學(xué)生的探索的可愛勁,不能按課前安排完成內(nèi)容又有何妨呢?)

            師:最后,請同學(xué)們想一下,通過本堂課的學(xué)習(xí),你獲得了什么?

            生1:我知道了求二次函數(shù)解析式方法有:一般式,頂點(diǎn)式,兩根式。

            生2:我獲得了解題的能力,今后做完一道題目,我會思考還有沒有更好的方法。

            三、回顧與反思

            1。每一個(gè)學(xué)生都有豐富的知識體驗(yàn)和生活積累,每一個(gè)學(xué)生都會有各自的思維方式和解決問題的策略。而我對他們的能力經(jīng)常低估,在以往的上課過程中,總喋喋不休,深怕講漏了什么,但一堂課下來,學(xué)生收獲甚微。本堂課,我賦予學(xué)生較多的思考和交流的機(jī)會,試著讓學(xué)生成為數(shù)學(xué)學(xué)習(xí)的主人,我自己充當(dāng)了一回?cái)?shù)學(xué)學(xué)習(xí)的組織者,沒想到取得了意想不到的效果,學(xué)生不但能用一般式,頂點(diǎn)式解決此題,還能深層挖掘巧妙地用兩根式解決此題,學(xué)生的潛力真是無窮。

            2。通過本堂課的教學(xué),我想了很多。新課程改革要求教師要有現(xiàn)代的教學(xué)觀、學(xué)生觀,才能培養(yǎng)出具有創(chuàng)新精神和實(shí)踐能力的下一代。所以教師應(yīng)當(dāng)走下“教壇”,與學(xué)生在民主、平等的氛圍中交流意見,共同探討問題。學(xué)生的主動參與是學(xué)習(xí)活動有效進(jìn)行的關(guān)鍵所在,因此教師還應(yīng)該在學(xué)生“學(xué)”上進(jìn)行改革,從學(xué)生的實(shí)際出發(fā),從學(xué)生的生活出發(fā),才能把學(xué)生從被動聽的束縛中解放出來,使學(xué)生真正成為學(xué)習(xí)的主人。本節(jié)課教師始終與學(xué)生保持著平等和相互尊重,為學(xué)生探究學(xué)習(xí)提供了前提條件。

            問題是無窮盡而活的,只有讓學(xué)生主動探索,才能真正地理解,鞏固知識點(diǎn),從而運(yùn)用知識點(diǎn),即真正知其所以然。今后,我將不斷嘗試,不斷完善自身,使學(xué)生的討論和思考更有意義。

          二次函數(shù)教學(xué)反思14

            這節(jié)課明顯是要讓學(xué)生明白什么是二次函數(shù),能區(qū)別二次函數(shù)與其他函數(shù)的不同,能深刻理解二次函數(shù)的一般形式,并能初步理解實(shí)際問題中對定義域的限制。通過學(xué)生的討論,解決了自己不能解決的問題,拓展應(yīng)用題通過學(xué)生的展示講解讓大部分學(xué)生基本掌握,使學(xué)生在原有知識的儲備基礎(chǔ)上很容易遷移和接受了這些知識.這節(jié)課的重點(diǎn)內(nèi)容放在“經(jīng)歷探索和表示二次函數(shù)關(guān)系的過程,使學(xué)生獲得了用二次函數(shù)表示變量之間關(guān)系的.體驗(yàn)。

            在教學(xué)中我采用了體驗(yàn)探究的教學(xué)方式,在教師的配合引導(dǎo)下,讓學(xué)生自己動手作圖,觀察、歸納出二次函數(shù)的性質(zhì),體驗(yàn)知識的形成過程,力求體現(xiàn)"主體參與、自主探索、合作交流、指導(dǎo)引探"的教學(xué)理念。整個(gè)教學(xué)過程主要分為三部分:第一部分是前置性作業(yè),前置作業(yè)是前一天發(fā)給學(xué)生的,主要涉及如何作圖、一次函數(shù)和反比例函數(shù)的性質(zhì)等問題。我的設(shè)計(jì)目的就上讓學(xué)生在復(fù)習(xí)這些知識的過程中體會從函數(shù)圖像來研究函數(shù)性質(zhì)的。應(yīng)該說這樣設(shè)計(jì)既讓初四同學(xué)復(fù)習(xí)了舊知又使他們體會到如何研究函數(shù),從哪些方面研究函數(shù),從思維層面鍛煉了學(xué)生的探究能力。第二部分是學(xué)習(xí)探究,探求活動前先讓一名同學(xué)讀了學(xué)習(xí)目標(biāo),讓大家?guī)е繕?biāo)去探究。

            整節(jié)課的流程可以這樣概括:學(xué)生討論問題——學(xué)生展示重點(diǎn)內(nèi)容——完善訓(xùn)練題討論實(shí)際問題對自變量的限制——課堂的小結(jié),最關(guān)鍵的是我認(rèn)為這符合學(xué)生的基本認(rèn)知規(guī)律,是容易讓學(xué)生理解和接受的。

            對于實(shí)際問題的選擇,我將4個(gè)問題整和于同一個(gè)實(shí)際背景下,這樣設(shè)計(jì)既能引起學(xué)生興趣,也盡量減少學(xué)生審題的時(shí)間,顯得非常有層次性,這些實(shí)際問題貫穿整個(gè)課堂的始終,使整個(gè)課堂有渾然天成的感覺。

            對于練習(xí)的設(shè)計(jì),仍然采取了不重復(fù)的原則性,盡量做到每題針對一個(gè)問題,并進(jìn)行及時(shí)的小結(jié),也遵循了從開放到封閉的原則,達(dá)到了良好的效果。

          二次函數(shù)教學(xué)反思15

            二次函數(shù)是中學(xué)數(shù)學(xué)的重要內(nèi)容,也是中考的熱點(diǎn)。其中考試涉及的主要有考查二次函數(shù)的定義、圖象與性質(zhì)及應(yīng)用等。在九年級的教學(xué)中,教師就要立足課堂,瞄準(zhǔn)中考,研究中考試題。近年來,二次函數(shù)的應(yīng)用題目不斷出現(xiàn)在各地中考題中,特別值得一提的是,有些源自課本中的例題或習(xí)題原型和變式。在日常教學(xué)時(shí),注重對接,為中考做好鋪墊,是我對這節(jié)二次函數(shù)解決實(shí)際問題實(shí)踐探索課的期待。

            二次函數(shù)應(yīng)用題型一般情況下,解題思路不外乎建立平面直角坐標(biāo)系,標(biāo)出圖象上的點(diǎn)的坐標(biāo),求圖象解析式,利用圖象解析式及性質(zhì),來解決最優(yōu)化等實(shí)際問題。一開始我引導(dǎo)學(xué)生回憶二次函數(shù)的三種不同形式的解析式,即一般式、頂點(diǎn)式、交點(diǎn)式,并說出它們各自的'性質(zhì)如拋物線的開口方向,對稱軸,頂點(diǎn)坐標(biāo),最大最小值,函數(shù)在對稱軸兩側(cè)的增減性。結(jié)合教材教學(xué)內(nèi)容,呈現(xiàn)習(xí)題27.2第5題,讓學(xué)生分小組去試驗(yàn)探索解決問題。各小組很快就得出三個(gè)特殊點(diǎn)的坐標(biāo)(0,0)(5,4)(10,0),并求出了拋物線的解析式,當(dāng)然速度有快有慢,第二問,就是求當(dāng)x=6時(shí)y的值,不少學(xué)生紛紛舉手示意完成,我很高興,也沒細(xì)究每個(gè)同學(xué)的情況。繼續(xù)按照預(yù)定方案,組織學(xué)生活動,開始對一道試題進(jìn)行探究。

            如圖,有一個(gè)橫截面為拋物線的橋洞,橋洞地面寬為8米,橋洞最高處距地面6米,F(xiàn)有一輛卡車,裝載集裝箱,箱寬3米,車與箱共高4.5米,請您計(jì)算一下,車輛能否通過橋洞。

            對于這個(gè)問題,不少學(xué)生表情凝重,目光迷惘,思路不暢,不知從何處下手。我反復(fù)引導(dǎo),幾次提醒按例題的方法,從函數(shù)的圖象上進(jìn)行考慮,但就是沒有人響應(yīng),探究幾乎陷于停頓,讓我大感意外,超乎我的想象。好在我尚能應(yīng)付,便提問素有“小諸葛”之稱的張文賀,你是怎樣思考的?張文賀說,他也知道首先建立平面直角坐標(biāo)系,但問題是不知道把坐標(biāo)系原點(diǎn)建在哪里,更不知道卡車是如何穿過橋洞,是靠中間走,還是靠邊通過?我一聽,才恍然大悟。原來學(xué)生的'認(rèn)知和老師想象的不一樣,加上生活經(jīng)驗(yàn)較少,難怪學(xué)生會沉默不語。對于坐標(biāo)系的建立方法,學(xué)生面對多種可能的選擇,往往束手無策,根本原因就是老師不重視對學(xué)生思考水平的研究,導(dǎo)致以老師思維代替學(xué)生思維,造成學(xué)生思考與實(shí)踐脫節(jié)。這就要求老師要從學(xué)生的實(shí)際出發(fā),了解學(xué)生的學(xué)習(xí)狀況,善于啟發(fā)和引導(dǎo),才能較好的達(dá)到教學(xué)目標(biāo)。

            本節(jié)課的設(shè)計(jì)初衷,原是讓學(xué)生從具體的生活實(shí)踐中,感知數(shù)學(xué)模型,達(dá)到從實(shí)際問題中抽象出數(shù)學(xué)模型,并用數(shù)學(xué)知識解決問題,同時(shí)讓學(xué)生感知和體會一題多變的變式訓(xùn)練,增加對數(shù)學(xué)解題思想的認(rèn)識。但在教學(xué)時(shí),學(xué)生對一些常規(guī)知識的缺失突出的暴露出來。如利用三點(diǎn)坐標(biāo)求二次函數(shù)解析式,學(xué)生解三元一次方程組感到困難等。

            當(dāng)我充滿自信準(zhǔn)備進(jìn)行下一問時(shí),有學(xué)生說,我還沒得出答案呢?我說,你們小組不是展示過了,怎么你還不會呢?他說,我的解析式設(shè)y=ax2+bx+c,我代入得不出來,組長設(shè)的和我不一樣。我告訴他,其實(shí)你用一般式同樣可以做的很準(zhǔn),只不過速度稍慢一些,這就需要加強(qiáng)運(yùn)算練習(xí)。下課后我一直在思考,學(xué)生越是基礎(chǔ)差,那些好的方法他們就越難掌握。學(xué)起來既吃力又費(fèi)氣,這就需要在平常加強(qiáng)雙基訓(xùn)練,每個(gè)學(xué)生都必須掌握好基本概念和基本技能。

          【二次函數(shù)教學(xué)反思】相關(guān)文章:

          《二次函數(shù)》教學(xué)反思07-19

          數(shù)學(xué)二次函數(shù)教學(xué)反思06-30

          函數(shù)教學(xué)反思10-09

          冪函數(shù)教學(xué)反思08-16

          函數(shù)的圖像教學(xué)反思10-08

          二次函數(shù)的頂點(diǎn)課件06-27

          對數(shù)函數(shù)教學(xué)反思10-26

          指數(shù)函數(shù)教學(xué)反思09-21

          《函數(shù)的單調(diào)性》的教學(xué)反思06-09

          函數(shù)的概念教學(xué)反思范文07-25