- 相關(guān)推薦
等比數(shù)列的前n項(xiàng)和教學(xué)反思
身為一名到崗不久的老師,我們的任務(wù)之一就是課堂教學(xué),我們可以把教學(xué)過程中的感悟記錄在教學(xué)反思中,那么你有了解過教學(xué)反思嗎?下面是小編收集整理的等比數(shù)列的前n項(xiàng)和教學(xué)反思,希望對大家有所幫助。
等比數(shù)列的前n項(xiàng)和教學(xué)反思1
《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲蓄、分期付款的有關(guān)計(jì)算等等,而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng).
在引入時我用了一個數(shù)學(xué)故事:在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當(dāng)時的印度國王大為贊賞,對他說:我可以滿足你的任何要求.西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數(shù)學(xué)家計(jì)算,結(jié)果出來后,國王大吃一驚。為什么呢?
該引入能激發(fā)學(xué)生的興趣,調(diào)動學(xué)習(xí)的積極性,懷里故事內(nèi)容緊扣本節(jié)課的主題與重點(diǎn)。
此時我問:同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學(xué)生寫出麥?倲(shù)。帶著這樣的問題,學(xué)生會動手算了起來,他們想到用計(jì)算器依次算出各項(xiàng)的值,然后再求和.這時我對他們的這種思路給予肯定。
實(shí)際上,在實(shí)際教學(xué)中,由于受課堂時間限制,教師舍不得花時間讓學(xué)生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過彎來,因而在教學(xué)中應(yīng)舍得花時間營造知識形成過程的氛圍,突破學(xué)生學(xué)習(xí)的障礙.同時,形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問題的新方法,為后面的教學(xué)埋下伏筆。
在肯定他們的思路后,我接著問:是什么數(shù)列?有何特征?應(yīng)歸結(jié)為什么數(shù)學(xué)問題呢?
探討1:,記為(1)式,注意觀察每一項(xiàng)的特征,有何聯(lián)系?(學(xué)生會發(fā)現(xiàn),后一項(xiàng)都是前一項(xiàng)的2倍)
探討2:如果我們把每一項(xiàng)都乘以2,就變成了它的后一項(xiàng),(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發(fā)現(xiàn)?
留出時間讓學(xué)生充分地比較,等比數(shù)列前n項(xiàng)和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來這是“天經(jīng)地義”的,但在學(xué)生看來卻是“不可思議”的,因此教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機(jī).
經(jīng)過比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項(xiàng),把兩式相減,相同的項(xiàng)就消去了,得到。并指出:這就是錯位相減法,并要求學(xué)生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?
經(jīng)過繁難的計(jì)算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學(xué)生在探索過程中,充分感受到成功的情感體驗(yàn),從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心.
這時我再順勢引導(dǎo)學(xué)生將結(jié)論一般化,
這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個別學(xué)生進(jìn)行指導(dǎo)。讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗(yàn)到學(xué)習(xí)的愉快和成就感。
對不對?這里的'q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時是什么數(shù)列?此時sn=?(這里引導(dǎo)學(xué)生對q進(jìn)行分類討論,得出公式,同時為后面的例題教學(xué)打下基礎(chǔ)。)
再次追問:結(jié)合等比數(shù)列的通項(xiàng)公式an=a1qn-1,如何把sn用a1、an、q表示出來?(引導(dǎo)學(xué)生得出公式的另一形式),這樣通過反問精講,一方面使學(xué)生加深對知識的認(rèn)識,完善知識結(jié)構(gòu),另一方面使學(xué)生由簡單地模仿和接受,變?yōu)閷χR的主動認(rèn)識,從而進(jìn)一步提高分析、類比和綜合的能力。這一環(huán)節(jié)非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點(diǎn)睛之妙用。
4.討論交流,延伸拓展
在此基礎(chǔ)上,我提出:探究等比數(shù)列前n項(xiàng)和公式,還有其它方法嗎?我們知道,
那么我們能否利用這個關(guān)系而求出sn呢?根據(jù)等比數(shù)列的定義又有,能否聯(lián)想到等比定理從而求出sn呢?以疑導(dǎo)思,激發(fā)學(xué)生的探索欲望,營造一個讓學(xué)生主動觀察、思考、討論的氛圍。以上兩種方法都可以化歸到,這其實(shí)就是關(guān)于的一個遞推式,遞推數(shù)列有非常重要的研究價(jià)值,是研究性學(xué)習(xí)和課外拓展的極佳資源,它源于課本,又高于課本,對學(xué)生的思維發(fā)展有促進(jìn)作用。
本節(jié)課通過三種推導(dǎo)方法的研究,使學(xué)生從不同的思維角度掌握了等比數(shù)列前n項(xiàng)和公式.錯位相減:變加為減,等價(jià)轉(zhuǎn)化;遞推思想:縱橫聯(lián)系,揭示本質(zhì);等比定理:回歸定義,自然樸實(shí).學(xué)生從中深刻地領(lǐng)會到推導(dǎo)過程中所蘊(yùn)含的數(shù)學(xué)思想,培養(yǎng)了學(xué)生思維的深刻性、敏銳性、廣闊性、批判性.同時通過精講一題,發(fā)散一串的變式教學(xué),使學(xué)生既鞏固了知識,又形成了技能.在此基礎(chǔ)上,通過民主和諧的課堂氛圍,培養(yǎng)了學(xué)生自主學(xué)習(xí)、合作交流的學(xué)習(xí)習(xí)慣,也培養(yǎng)了學(xué)生勇于探索、不斷創(chuàng)新的思維品質(zhì)。
等比數(shù)列的前n項(xiàng)和教學(xué)反思2
作為一名高中數(shù)學(xué)教師來說,上好每一堂課,要充分挖掘教材,要從"教"的角度去看數(shù)學(xué),還要對教學(xué)過程以及教學(xué)的結(jié)果進(jìn)行反思。高中數(shù)學(xué)不少教學(xué)內(nèi)容適合于開展研究性學(xué)習(xí);教學(xué)組織形式是教學(xué)設(shè)計(jì)關(guān)注的一個重要問題,提煉出本節(jié)課的研究主題。對學(xué)生來說,學(xué)習(xí)數(shù)學(xué)的一個重要目的是要學(xué)會數(shù)學(xué)的思想。他不僅要能"做",還應(yīng)當(dāng)能夠教會別人去"做" 。
以下是我對本次課教學(xué)的一些反思。
本節(jié)課主要有兩個方面的內(nèi)容,一是求等比數(shù)列前n項(xiàng)和的方法,即錯位相減法;二是等比數(shù)列前n項(xiàng)和的公式。由于學(xué)生初次學(xué)習(xí),以前沒有接觸過錯位相減法方法,所以要想讓學(xué)生自己總結(jié)出錯位相減這一方法應(yīng)該是比較困難的`,所以我先從簡單的多項(xiàng)式化簡,構(gòu)造兩個類似的例子讓學(xué)生自己比較它們的結(jié)構(gòu)出發(fā),給他們一個直觀的感受。為拿出錯位相減做鋪墊。
在教學(xué)中,學(xué)生也確實(shí)通過兩個例子的比較,比較容易的總結(jié)出了這個方法。所以由學(xué)生自己來給出通項(xiàng)公式也就順理成章了,拿出通項(xiàng)公式后,學(xué)生總習(xí)慣于直接套用公式而忽視對公式的分情況討論,所以一定要反復(fù)強(qiáng)調(diào)。課后,在各位數(shù)學(xué)老師的幫助下,我認(rèn)識到在強(qiáng)調(diào)公式的時候只是從公式本身出發(fā)是不夠的,學(xué)生理解的也很模糊,如果在這里加上實(shí)際的例子效果應(yīng)該會更好,這是以后需要加強(qiáng)的地方。后面在講解例題的時候由于時間關(guān)系,沒有在黑板上進(jìn)行細(xì)致的演算,一帶而過,高估了學(xué)生的計(jì)算能力。
總之,結(jié)合新課程的教學(xué)理念進(jìn)行相應(yīng)的課后反思,努力上好每堂課,我相信可以不斷提高業(yè)務(wù)能力和水平,從而更好地服務(wù)于學(xué)生。
等比數(shù)列的前n項(xiàng)和教學(xué)反思3
今天講授《等比數(shù)列前n項(xiàng)和公式》。引導(dǎo)學(xué)生探究等比數(shù)列前n項(xiàng)和公式是重要內(nèi)容。在探究公式的計(jì)算方法時,讓學(xué)生通過觀察、分析、類比、聯(lián)想解決問題。有意識地使學(xué)生在推導(dǎo)過程中,忽略公比q=1和q≠1的情形,從而突破了公比的q=1和q≠1難點(diǎn),學(xué)生在推導(dǎo)公式中通過自己探究解決了“錯位相減”的重要數(shù)學(xué)思想。高中新課程正強(qiáng)調(diào)對數(shù)學(xué)本質(zhì)的認(rèn)識,強(qiáng)調(diào)返璞歸真,努力揭示數(shù)學(xué)概念、法則、結(jié)論的發(fā)展過程和本質(zhì)。
本節(jié)課后還有以下體會:
(1)以學(xué)生為主體
愛因斯坦說過:“單純的專業(yè)知識灌輸只能產(chǎn)生機(jī)器,而不可能造就一個和諧發(fā)展的人才”,因此數(shù)學(xué)學(xué)習(xí)的核心是思考,離開思考就沒有真正的`數(shù)學(xué)。這節(jié)課,通過創(chuàng)設(shè)了一系列的問題情景,邊展示,邊提問,讓學(xué)生邊觀察,邊思考,邊討論。鼓勵學(xué)生積極參與教學(xué)活動,包括思維參與和行為參與,鼓勵學(xué)生發(fā)現(xiàn)數(shù)學(xué)的規(guī)律和問題解決的途徑,使他們經(jīng)歷知識形成的過程。在教學(xué)難點(diǎn)處適當(dāng)放慢節(jié)奏,給學(xué)生充分的時間進(jìn)行思考與討論,讓學(xué)生做課堂的主人,充分發(fā)表自己的意見。激勵的語言、輕松愉悅的氛圍、民主的教學(xué)方式,使學(xué)生品嘗到類比成功的歡愉。
(2)巧設(shè)情景,倡導(dǎo)自主探索、合作交流的學(xué)習(xí)方式
學(xué)生的數(shù)學(xué)學(xué)習(xí)活動不應(yīng)只限于接受、記憶、模仿和練習(xí),還應(yīng)倡導(dǎo)自主探索、合作交流等學(xué)習(xí)方式,這些方式有助于發(fā)揮學(xué)生學(xué)習(xí)的主動性,使學(xué)生的學(xué)習(xí)過程成為在教師引導(dǎo)下,不斷經(jīng)歷感知、觀察發(fā)現(xiàn)、歸納類比、抽象概括、演繹證明、反思與建構(gòu)等思維過程,體驗(yàn)等比數(shù)列前n項(xiàng)和公式的“在創(chuàng)造”過程,讓學(xué)生在生生互動、師生互動中掌握知識,提高解決問題的能力。
蘇霍姆林說過:“在人的內(nèi)心深處,都有一種根深蒂固的需要,那就是希望自己是一個發(fā)現(xiàn)者和探索者!北竟(jié)課正是抓住學(xué)生的這一心理需求,從新課引入到課后作業(yè),創(chuàng)設(shè)了一系列“數(shù)學(xué)探究”活動,為學(xué)生開展積極主動的、多樣的學(xué)習(xí)方式,創(chuàng)設(shè)有利條件,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,并鼓勵學(xué)生在學(xué)習(xí)過程中,養(yǎng)成獨(dú)立思考,積極探索的習(xí)慣。
等比數(shù)列的前n項(xiàng)和教學(xué)反思4
新課程理念倡導(dǎo)的數(shù)學(xué)課堂教學(xué)設(shè)計(jì)必須“以學(xué)生的學(xué)為本”,“以學(xué)生的發(fā)展為本”,即數(shù)學(xué)課堂教學(xué)設(shè)計(jì)應(yīng)當(dāng)是人的發(fā)展的“學(xué)程”設(shè)計(jì),而不單純以學(xué)科為中心的“教程”的設(shè)計(jì)。
一、教學(xué)目標(biāo)的反思
本節(jié)課的教學(xué)設(shè)計(jì)意圖:
1。進(jìn)一步促進(jìn)學(xué)生數(shù)學(xué)學(xué)習(xí)方式的改善
這是等比數(shù)列的前n項(xiàng)和公式的第一課時,是實(shí)踐二期課改中研究型學(xué)習(xí)問題的很好材料,可以落實(shí)新課程標(biāo)準(zhǔn)倡導(dǎo)的“提倡積極主動,勇于探索的學(xué)習(xí)方式;強(qiáng)調(diào)本質(zhì),注意適度形式化”的理念,教與學(xué)的重心不只是獲取知識,而是轉(zhuǎn)到學(xué)會思考、學(xué)會學(xué)習(xí)上,教師注意培養(yǎng)學(xué)生以研究的態(tài)度和方式去認(rèn)真觀察、分析數(shù)學(xué)現(xiàn)象,提出新的問題,發(fā)現(xiàn)事物的內(nèi)在規(guī)律,引導(dǎo)學(xué)生自覺探索,進(jìn)一步培養(yǎng)學(xué)生的自主學(xué)習(xí)能力。
2。落實(shí)二期課改中的三維目標(biāo),強(qiáng)調(diào)探究的過程和方法
“知識與技能、過程與方法、情感,態(tài)度與價(jià)值”這三維目標(biāo)是“以學(xué)生的發(fā)展為本”的教育理念在二期課改中的`具體體現(xiàn),本節(jié)課是數(shù)學(xué)公式教學(xué)課,所以強(qiáng)調(diào)學(xué)生對認(rèn)知過程的經(jīng)歷和體驗(yàn),重視對實(shí)際問題的理解和應(yīng)用推廣,強(qiáng)調(diào)學(xué)生對探究過程和方法的掌握,探究過程包括發(fā)現(xiàn)和提出問題,通過觀察、抽象、概括、類比、歸納等探究方法進(jìn)行實(shí)踐。
在此基礎(chǔ)上,根據(jù)本班學(xué)生是區(qū)重點(diǎn)學(xué)校學(xué)生,學(xué)習(xí)勤懇,平時好提問,敢于交流與表達(dá)自己想法,故本節(jié)課制定了如下教學(xué)目標(biāo):
(l)、通過歷史典故引出等比數(shù)列求和問題,并在問題解決的過程中自主探索等比數(shù)列的前n項(xiàng)和公式的求法。
。2)、經(jīng)歷等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)過程,了解推導(dǎo)公式所用的方法,掌握等比數(shù)列的前n項(xiàng)和公式,并能進(jìn)行簡單應(yīng)用。
二、教材的分析和反思:
本節(jié)課是《等比數(shù)列的前n項(xiàng)和公式》的第一課時,之前學(xué)生已經(jīng)掌握了數(shù)列的基本概念、等差與等比數(shù)列的通項(xiàng)公式及等差數(shù)列的前n項(xiàng)和公式,對于本節(jié)課所需的知識點(diǎn)和探究方法都有了一定的儲備,新教材內(nèi)容是給出了情景問題:印度國王獎賞國際象棋發(fā)明者的故事,通過求棋盤上的麥?倲(shù)這個問題的解決,體會由多到少的錯位相減法的數(shù)學(xué)思想,并將其類比推廣到一般的等比數(shù)列的前n項(xiàng)和的求法,最后通過一些例題幫助學(xué)生鞏固與掌
【等比數(shù)列的前n項(xiàng)和教學(xué)反思】相關(guān)文章:
《d t n l》教學(xué)反思09-12
項(xiàng)脊軒志教學(xué)反思01-16
教學(xué)反思和課后反思12-08
前拋實(shí)心球教學(xué)反思09-21
前擲實(shí)心球教學(xué)反思10-31
比和比例教學(xué)反思12-18