倍數(shù)和因數(shù)教學(xué)反思(15篇)
身為一名到崗不久的人民教師,我們需要很強(qiáng)的課堂教學(xué)能力,借助教學(xué)反思可以快速提升我們的教學(xué)能力,教學(xué)反思應(yīng)該怎么寫(xiě)才好呢?下面是小編整理的倍數(shù)和因數(shù)教學(xué)反思,僅供參考,歡迎大家閱讀。
倍數(shù)和因數(shù)教學(xué)反思1
《公倍數(shù)和公因數(shù)》在新教材中改動(dòng)很大,新教材將數(shù)的整除中有關(guān)分解質(zhì)因數(shù)、互質(zhì)數(shù)、用短除法求幾個(gè)數(shù)的最大公因數(shù)和最小公倍數(shù)的教學(xué)內(nèi)容精簡(jiǎn)掉了,新教材突出了讓學(xué)生在現(xiàn)實(shí)情境中探究認(rèn)識(shí)公倍數(shù)和最小公倍數(shù),公因數(shù)和最大公因數(shù),突出了運(yùn)用數(shù)學(xué)概念,讓學(xué)生探索找兩個(gè)數(shù)的最小公倍數(shù)、最大公因數(shù)的方法,注重讓學(xué)生在解決問(wèn)題的過(guò)程中,主動(dòng)探索簡(jiǎn)潔的方法,進(jìn)行有條理的思考,加強(qiáng)了數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系。教學(xué)以后與以前的教材相比,主要的體會(huì)有以下幾點(diǎn)。
一是在現(xiàn)實(shí)的情境中教學(xué)概念,讓學(xué)生通過(guò)操作領(lǐng)會(huì)公倍數(shù)、公因數(shù)的含義。例1教學(xué)公倍數(shù)和最小公倍數(shù),例3教學(xué)公因數(shù)和最大公因數(shù),都是形成新的數(shù)學(xué)概念,都讓學(xué)生在操作活動(dòng)中領(lǐng)會(huì)概念的含義。學(xué)生通過(guò)操作活動(dòng),感受公倍數(shù)和公因數(shù)的實(shí)際背景,縮短了抽象概念與學(xué)生已有知識(shí)經(jīng)驗(yàn)之間的`距離,有利于學(xué)生運(yùn)用公倍數(shù)、最小公倍數(shù)、公因數(shù)和最大公因數(shù)的知識(shí)解決實(shí)際問(wèn)題。
二是有利于改善學(xué)習(xí)方式,便于學(xué)生通過(guò)操作和交流經(jīng)歷學(xué)習(xí)過(guò)程。在教學(xué)中,讓學(xué)生按要求自主操作,發(fā)現(xiàn)用怎樣的長(zhǎng)方形可以正好鋪滿一個(gè)正方形;用邊長(zhǎng)幾厘米的正方形可以正好鋪滿一個(gè)長(zhǎng)方形。在對(duì)所發(fā)現(xiàn)的不同的結(jié)果的過(guò)程中,引導(dǎo)學(xué)生聯(lián)系除法算式進(jìn)行思考,對(duì)直觀操作活動(dòng)進(jìn)行初步的抽象。再把初步發(fā)現(xiàn)的結(jié)論進(jìn)行類推,在此基礎(chǔ)上,引導(dǎo)學(xué)生思考正方形的邊長(zhǎng)與長(zhǎng)方形的長(zhǎng)和寬有什么關(guān)系,再揭示公倍數(shù)和公因數(shù),最小公倍數(shù)與最大公因數(shù)的概念,突出概念的內(nèi)涵是“既是……又是……”即“公有”。并在此基礎(chǔ)上,借助直觀的集合等圖式,顯示公倍數(shù)與公因數(shù)的意義。讓學(xué)生經(jīng)歷了概念的形成過(guò)程。
三是刪掉了一些與學(xué)生實(shí)際聯(lián)系不夠緊密、對(duì)后繼學(xué)習(xí)沒(méi)有影響的內(nèi)容后,確實(shí)減輕了學(xué)生的負(fù)擔(dān),但是找兩個(gè)數(shù)的最小公倍數(shù)和最大公因數(shù)時(shí)由于采用了列舉法,學(xué)生得花較多的時(shí)間去找,當(dāng)碰到的兩個(gè)數(shù)都比較大時(shí),不僅花時(shí)多,而且還容易出現(xiàn)遺漏或算錯(cuò)的情況。相比之下,用短除法來(lái)求兩個(gè)數(shù)的最小公倍數(shù)和最大公因數(shù)就不會(huì)出現(xiàn)這方面的問(wèn)題,所以我在實(shí)際教學(xué)中,先根據(jù)概念采用一一列舉的方法求兩個(gè)數(shù)的最小公倍數(shù)和最大公因數(shù),待學(xué)生熟悉之后就教學(xué)生運(yùn)用短除法求兩個(gè)數(shù)的最小公倍數(shù)和最大公因數(shù),這樣的安排效果不錯(cuò),學(xué)生也沒(méi)感到增加了負(fù)擔(dān)。
倍數(shù)和因數(shù)教學(xué)反思2
《倍數(shù)和因數(shù)》,由于之前沒(méi)上過(guò)這冊(cè)內(nèi)容,在看完教材后就和同組的老師說(shuō),這個(gè)內(nèi)容好像挺簡(jiǎn)單的。不過(guò)上完這節(jié)課后這個(gè)想法卻煙消云散,根本沒(méi)有想象的那么容易上,而且在課堂中存在了很多在預(yù)設(shè)中沒(méi)有想到的問(wèn)題,下面對(duì)自己的課堂做一些反思:
1.在第一個(gè)環(huán)節(jié)認(rèn)識(shí)倍數(shù)和因數(shù)的意義中,首先讓學(xué)生用12個(gè)同樣大小的小正方形擺成一個(gè)長(zhǎng)方形,并用乘法算式來(lái)表示你是怎么擺的,有幾種不同的擺法?通過(guò)讓學(xué)生動(dòng)手操作實(shí)踐,體現(xiàn)了以學(xué)生為本,而且能喚醒學(xué)生已有的知識(shí)經(jīng)驗(yàn),抽象為具體討論的數(shù)學(xué)問(wèn)題。在抽象出三個(gè)不同的乘法算式后,我以第一個(gè)乘法算式4×3=12為例,介紹倍數(shù)和因數(shù)的關(guān)系,本來(lái)以為說(shuō):“4和3是12的因數(shù),12是4和3的倍數(shù)”應(yīng)該是很簡(jiǎn)單的兩句話,學(xué)生應(yīng)該會(huì)說(shuō),可是當(dāng)請(qǐng)學(xué)生來(lái)自己選擇一個(gè)乘法算式來(lái)說(shuō)一說(shuō)時(shí),好幾個(gè)學(xué)生卻被卡住了,還有的說(shuō)成了4是12的倍數(shù)。
針對(duì)學(xué)生出現(xiàn)的問(wèn)題,我覺(jué)得可能是自己在介紹時(shí)運(yùn)用的不到位,一個(gè)是比較小,后面的`同學(xué)都沒(méi)能看清楚;另一方面我預(yù)想的比較簡(jiǎn)單,所以說(shuō)了一遍后也沒(méi)請(qǐng)學(xué)生再?gòu)?fù)述一遍。在說(shuō)到“誰(shuí)是誰(shuí)的倍數(shù),誰(shuí)是誰(shuí)的因數(shù)”時(shí)應(yīng)該在中相繼出示這兩句話,這樣的話讓學(xué)生看著說(shuō)印象會(huì)更深刻,相信學(xué)生說(shuō)的也會(huì)比較好。
2。第二個(gè)環(huán)節(jié)是探求找一個(gè)數(shù)的倍數(shù)的方法,從上一個(gè)環(huán)節(jié)我最后出示的除法算式中引入:我們知道了18是3的倍數(shù),那3的倍數(shù)是不是只有18呢?通過(guò)疑問(wèn)來(lái)激發(fā)學(xué)生找出3的倍數(shù)有哪些?學(xué)生很快能找到,但是并沒(méi)有找全,于是再問(wèn),那又什么辦法把3的倍數(shù)找全呢?學(xué)生自然想到去乘1,乘2,乘3……,也就按順序找到了3的倍數(shù)。在分別找到了2和5的倍數(shù)后我問(wèn)學(xué)生:觀察上面這幾個(gè)例子,你有什么發(fā)現(xiàn)?請(qǐng)了好幾個(gè)學(xué)生都沒(méi)能找到,最后還是老師告訴了學(xué)生倍數(shù)最小是?最大呢?
針對(duì)最后請(qǐng)學(xué)生找一找發(fā)現(xiàn)倍數(shù)的共同特點(diǎn)這一問(wèn)題,我覺(jué)得我在設(shè)計(jì)時(shí)問(wèn)題提得太大,太籠統(tǒng)。學(xué)生聽(tīng)到問(wèn)題后可能無(wú)從下手,不知道該找什么。可以問(wèn):剛才找了2,3,5的倍數(shù),觀察這幾個(gè)數(shù)的倍數(shù),他們有什么共同特點(diǎn)?這樣學(xué)生就會(huì)比較有針對(duì)性地去尋找結(jié)果。
3。第三個(gè)環(huán)節(jié)是探求找一個(gè)數(shù)因數(shù)的方法,找一個(gè)數(shù)因數(shù)的方法是本節(jié)課的難點(diǎn),如何做到既不重復(fù)又不遺漏地找一個(gè)數(shù)的因數(shù),對(duì)于剛剛對(duì)倍數(shù)因數(shù)有個(gè)感性認(rèn)識(shí)的學(xué)生來(lái)說(shuō)有是一定困難的,而這個(gè)環(huán)節(jié)我處理的也不到位,學(xué)生對(duì)找一個(gè)數(shù)因數(shù)的方法掌握的不夠好。
我一開(kāi)始設(shè)計(jì)請(qǐng)學(xué)生自主找36的因數(shù),在巡視時(shí)發(fā)現(xiàn)有一部分學(xué)生沒(méi)有頭緒,無(wú)從下手,時(shí)間倒是花去了不少。所以我覺(jué)得是否可以先從12下手,因?yàn)榍懊嬉婚_(kāi)始已經(jīng)找過(guò)12的因數(shù)了,如果這里能用12做一下鋪墊,可能找36的因數(shù)時(shí)就會(huì)好一些。
在學(xué)生自主探索完36的因數(shù)有哪些后,交流不同學(xué)生的結(jié)果,有一位出現(xiàn)了1,36;2,18;3,12;4,9;6,6我就問(wèn)你是怎么找到的?學(xué)生說(shuō)是用除法找到的,于是就用36分別去除1,2,3……得到了36的因數(shù)。其實(shí)這里除了用除法來(lái)找之外,還可以用乘的方法來(lái)找,而乘的方法似乎對(duì)于學(xué)生來(lái)說(shuō)在找得時(shí)候還更簡(jiǎn)單一點(diǎn)。更重要的是我覺(jué)得一對(duì)對(duì)的找對(duì)于找全一個(gè)數(shù)的因數(shù)是一個(gè)很重要的方法,而我卻把這個(gè)方法忽略了,所以學(xué)生對(duì)于找一個(gè)數(shù)的因數(shù)的方法不夠深刻,在練習(xí)中也發(fā)現(xiàn)做的不理想。
4。第四個(gè)環(huán)節(jié)是鞏固練習(xí),我設(shè)計(jì)了2個(gè)小游戲。一個(gè)是看誰(shuí)反應(yīng)快,符合要求的請(qǐng)學(xué)生起立,這個(gè)游戲?qū)W生參與面廣,學(xué)生也感興趣,還從中發(fā)現(xiàn)了找誰(shuí)的學(xué)號(hào)是幾的因數(shù),1每次都會(huì)起立,就更好的鞏固了一個(gè)數(shù)的因數(shù)最小是1。但是也有個(gè)別學(xué)生反應(yīng)比較慢。第二個(gè)小游戲是猜一猜老師的手機(jī)號(hào)碼是多少?但是由于前面時(shí)間用的比較多,所以沒(méi)來(lái)得及做。
原本認(rèn)為簡(jiǎn)單的課卻一點(diǎn)都不簡(jiǎn)單,每個(gè)細(xì)小環(huán)節(jié)的把握都要求我去仔細(xì)的鉆研教材,設(shè)計(jì)好每一步,這樣才能上好一節(jié)課。
倍數(shù)和因數(shù)教學(xué)反思3
《因數(shù)和倍數(shù)》這部分內(nèi)容學(xué)生初次接觸,對(duì)于學(xué)生來(lái)說(shuō)是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實(shí)生活中又不經(jīng)常接觸,對(duì)這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個(gè)長(zhǎng)期的消化理解的過(guò)程。
同時(shí)這部分內(nèi)容是比較重要的,為五年級(jí)的最小公倍數(shù)和最大公因數(shù)的學(xué)習(xí)奠定了基礎(chǔ)。
本節(jié)可充分發(fā)揮學(xué)生的主體性,讓每個(gè)學(xué)生都能參加到數(shù)學(xué)知識(shí)的學(xué)習(xí)中去,調(diào)動(dòng)學(xué)生學(xué)習(xí)的興趣和主動(dòng)性。本節(jié)課主要從以下幾個(gè)方面進(jìn)行教學(xué)的。
一:動(dòng)手操作,探究方法.
我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學(xué)生動(dòng)手操作把12個(gè)小正方形擺成不同的長(zhǎng)方形,再讓學(xué)生寫(xiě)出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識(shí)基礎(chǔ)上,從動(dòng)手操作,直觀感知,變抽象為具體。
二、倍數(shù)教學(xué),發(fā)現(xiàn)特點(diǎn)。
利用乘法算式,讓學(xué)生找出3的倍數(shù),這里讓學(xué)生理解:
。1)3的倍數(shù)應(yīng)該是3與一個(gè)數(shù)相乘的積。
。2)找3的倍數(shù)是要有一定的順序,依次用1、2、3……與3相乘。有了找3倍數(shù)的方法,在上學(xué)生找出2和5的倍數(shù)。這樣即鞏固對(duì)例題的理解,同時(shí)也為接下來(lái)的討論倍數(shù)的特點(diǎn)奠定基礎(chǔ)。
最后讓學(xué)生通過(guò)討論發(fā)現(xiàn):
。1)一個(gè)數(shù)的倍數(shù)個(gè)數(shù)是無(wú)限的(要用省略號(hào))。
。2)一個(gè)數(shù)的最小倍數(shù)是本身,沒(méi)有最大的倍數(shù)。
三、因數(shù)教學(xué),發(fā)現(xiàn)特點(diǎn)。
找一個(gè)數(shù)因數(shù)的'方法是本節(jié)課的難點(diǎn)。找一個(gè)數(shù)的因數(shù)的方法和倍數(shù)相似,大部分學(xué)生都用乘法算式尋找一個(gè)數(shù)的因數(shù),這里教師可以通過(guò)幾到有序排列的除法算式啟發(fā)學(xué)生進(jìn)一步理解。強(qiáng)調(diào)有序(從小到大),不重復(fù)、不遺漏。隨后讓學(xué)生找出15、16的因數(shù)有那些。最后通過(guò)比較討論讓學(xué)生得出因數(shù)的特點(diǎn):
(1)一個(gè)數(shù)因數(shù)的個(gè)數(shù)是有限的。
。2)一個(gè)數(shù)最小的因數(shù)是1,最大的因數(shù)是本身。(讓學(xué)生明白所有的數(shù)都有因數(shù)1).
四、練習(xí)反饋情況
從學(xué)生的作業(yè)情況來(lái)看,大部分學(xué)生掌握的還是不錯(cuò)的,有部分基礎(chǔ)差的學(xué)生,有如下幾點(diǎn)錯(cuò)誤出現(xiàn):
1、倍數(shù)沒(méi)有加省略號(hào)。
2、分不清倍數(shù)和因數(shù),倍數(shù)也加省略號(hào),因數(shù)也加省略號(hào)。
3、因數(shù)有遺漏的情況。從以上情況來(lái)看,在今后的教學(xué)中要多關(guān)注基礎(chǔ)比較差的學(xué)生,注意補(bǔ)差工作;同時(shí)要注意教學(xué)中細(xì)節(jié)的處理。
倍數(shù)和因數(shù)教學(xué)反思4
因數(shù)和倍數(shù)是蘇教版五年級(jí)下冊(cè)第三單元的內(nèi)容。這一內(nèi)容與原來(lái)教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎(chǔ)上認(rèn)識(shí)因數(shù)倍數(shù)。而教材是通過(guò)用12個(gè)小正方形拼長(zhǎng)方形并寫(xiě)乘法算式來(lái)引入因數(shù)和倍數(shù)。我在教學(xué)時(shí)做了一些下的改動(dòng),例題從12個(gè)相同的正方形拼長(zhǎng)方形開(kāi)始教學(xué),學(xué)生對(duì)這個(gè)活動(dòng)已經(jīng)很熟悉,幾乎人人都知道有不同的拼法,都能順利地拼出三種不同的長(zhǎng)方形。因此,我要求不用12個(gè)正方形拼,而是在腦子里“想像拼”,不能想象的就在本子上“畫(huà)拼”,“拼”好后,我也要求只用一個(gè)乘法算式表示你的拼法,這樣不僅節(jié)省了不少時(shí)間,更主要的是我覺(jué)得這樣的操作活動(dòng),雖然看起來(lái)不熱鬧,但學(xué)生的學(xué)習(xí)興趣被激發(fā)了、思維被調(diào)動(dòng)起來(lái)了,主動(dòng)參與到了知識(shí)的學(xué)習(xí)中去了。
能不重復(fù)、不遺漏,有序地找出一個(gè)數(shù)的因數(shù),是本課的教學(xué)難點(diǎn)。在教學(xué)中,我是這樣設(shè)計(jì)的:在根據(jù)1×12=12,2×6=12,3×4=12三個(gè)乘法算式說(shuō)出了誰(shuí)是誰(shuí)的'因數(shù)、誰(shuí)是誰(shuí)的倍數(shù)后,教師緊接著提問(wèn):12的因數(shù)有哪些?學(xué)生看著黑板上的算式很快可找出12的因數(shù),接著再提問(wèn):你是怎么看出來(lái)的?根據(jù)一個(gè)乘法算式可以得到12的幾個(gè)因數(shù)?在學(xué)生回答之后,我接著請(qǐng)同學(xué)們用剛才的方法自己找一找36的因數(shù)有哪些。在匯報(bào)時(shí),重點(diǎn)解決如何有序、不重復(fù)、不遺漏地找出一個(gè)數(shù)的因數(shù)。雖然這樣的教學(xué)設(shè)計(jì),看起來(lái)學(xué)生的主動(dòng)探索過(guò)程好像削弱了好多,但根據(jù)試上這課時(shí)的情況看,這樣的設(shè)計(jì)比直接讓學(xué)生自主探索36的因數(shù)有哪些學(xué)習(xí)效果要好一些。直接探索36的因數(shù)有哪些,放得太開(kāi),學(xué)生無(wú)從下手,暴露出了許多問(wèn)題,有的不知道該如何找因數(shù),有的沒(méi)有找全,而學(xué)生在教師的引導(dǎo)下,發(fā)現(xiàn)了找一個(gè)數(shù)因數(shù)的方法后接著去找36的因數(shù),那么他所關(guān)注的是如何有序地找出一個(gè)數(shù)的因數(shù),這樣的思考更有針對(duì)性,目標(biāo)也更明確,對(duì)知識(shí)的掌握也能做得更好。
倍數(shù)和因數(shù)教學(xué)反思5
在上學(xué)期的白紙備課活動(dòng)中,我們高年段數(shù)學(xué)抽到的教學(xué)內(nèi)容就是因數(shù)與倍數(shù),這個(gè)內(nèi)容是我沒(méi)有教過(guò)的,在看到教學(xué)內(nèi)容時(shí),我心里不禁在打鼓,我能找準(zhǔn)教學(xué)重難點(diǎn)嗎?能突破重難點(diǎn)嗎?一連串問(wèn)題涌了上來(lái),最后我還是讓自己冷靜下來(lái),靜下心來(lái)認(rèn)真分析教材,盡自己最大的努力梳理出教學(xué)重難點(diǎn),創(chuàng)設(shè)情境、設(shè)計(jì)游戲來(lái)突出重點(diǎn)、突破難點(diǎn)。在設(shè)計(jì)完教學(xué)過(guò)程后,我也與同組的老師交流了活動(dòng)體會(huì)。原來(lái)在老教材中沒(méi)有因數(shù)這個(gè)概念,只有約數(shù)和倍數(shù),而且是由整除的概念引入的,但因?yàn)槲沂堑谝淮谓虒W(xué)這個(gè)內(nèi)容,很自然的就沒(méi)有被以往教材的教學(xué)定式所束縛,嘗到了新教材的甜頭。現(xiàn)在剛好又教了這個(gè)內(nèi)容,仔細(xì)參考了教學(xué)用書(shū)我才真正領(lǐng)悟到了新教材的新穎所在。
新教材在引入因數(shù)和倍數(shù)的`概念時(shí)與以往的教材有所不同。在以往的教材中,都是通過(guò)除法算式來(lái)引出整除的概念,每個(gè)除法算式對(duì)應(yīng)著一對(duì)有整除關(guān)系的數(shù),如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。實(shí)際上,由于乘除法本身就存在著互逆關(guān)系,用乘法算式(如b=na)同樣可以表示整除的含義。因此,新教材中沒(méi)有用數(shù)學(xué)化的語(yǔ)言給“整除”下定義,而是利用一個(gè)簡(jiǎn)單的實(shí)物圖(2行飛機(jī),每行6架)引出一個(gè)乘法算式2×6=12,通過(guò)這個(gè)乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣,學(xué)生不必通過(guò)12÷2=6得出12能被2整除,進(jìn)而2是12的因數(shù),12是2的倍數(shù)。再通過(guò)12÷6=2得出12能被6整除,進(jìn)而6是12的因數(shù),12是6的倍數(shù),大大簡(jiǎn)化了敘述和記憶的過(guò)程。在這兒,用一個(gè)乘法算式2×6=12可以同時(shí)說(shuō)明“2和6都是12的因數(shù),12是2的倍數(shù),也是6的倍數(shù)。”
這樣的設(shè)計(jì)既減輕了學(xué)生的學(xué)習(xí)負(fù)擔(dān)又讓學(xué)生在學(xué)習(xí)時(shí)盡量避免出現(xiàn)概念混淆、理解困難的問(wèn)題。學(xué)生對(duì)新知掌握較牢,在實(shí)際教學(xué)中我就是這樣處理的,學(xué)生樂(lè)學(xué),思路清晰。
倍數(shù)和因數(shù)教學(xué)反思6
這節(jié)課帶給我的感想是頗多的,但綜觀整堂課,我覺(jué)得要改進(jìn)的地方還有很多,我只有不斷地進(jìn)行反思,才能不斷地完善思路,最終才能有所悟,有所長(zhǎng)。下面就說(shuō)說(shuō)我對(duì)本課在教學(xué)設(shè)計(jì)上的反思和一些初淺的想法。
本單元內(nèi)容在編排上與老教材有較大的差異,比如在認(rèn)識(shí)“因數(shù)、倍數(shù)”時(shí),不再運(yùn)用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認(rèn)知難度,雖然課本沒(méi)出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。本課的教學(xué)重點(diǎn)是求一個(gè)數(shù)的因數(shù),在學(xué)生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關(guān)系的基礎(chǔ)上,對(duì)學(xué)生而言,怎樣求一個(gè)數(shù)的因數(shù),難度并不算大,因此教學(xué)例題“找出18的因數(shù)”時(shí),我先放手讓學(xué)生自己找,學(xué)生在獨(dú)立思考的過(guò)程中,自然而然的會(huì)結(jié)合自己對(duì)因數(shù)概念的理解,找到解決問(wèn)題的方法(培養(yǎng)學(xué)生對(duì)已有知識(shí)的運(yùn)用意識(shí)),然后在交流中不難發(fā)現(xiàn)可用乘法或除法來(lái)求一個(gè)數(shù)的因數(shù)(列出積是18的乘法算式或列出被除數(shù)是18的'除法算式)。在這個(gè)學(xué)習(xí)活動(dòng)環(huán)節(jié)中,我留給了學(xué)生較充分的思維活動(dòng)的空間,有了自由活動(dòng)的空間,才會(huì)有思維創(chuàng)造的火花,才能體現(xiàn)教育活動(dòng)的終極目標(biāo)。特別是用除法找因數(shù)的學(xué)生,正是因?yàn)樗麄円庾R(shí)到了因數(shù)與倍數(shù)之間的整除關(guān)系的本質(zhì),才會(huì)想到用除法來(lái)解決問(wèn)題,我也不由得佩服這些孩子對(duì)知識(shí)的遷移能力。在這個(gè)環(huán)節(jié)的處理上,教材的本意是先由教師提出“想一想,幾和幾相乘得18?”引導(dǎo)學(xué)生從因數(shù)的概念,用乘法來(lái)找因數(shù),而我考慮到本班孩子的學(xué)情(絕大多數(shù)學(xué)生能夠運(yùn)用所學(xué)知識(shí),找到求因數(shù)的方法),如教師一開(kāi)始就引導(dǎo)學(xué)生:想幾和幾相乘,勢(shì)必會(huì)造成先入為主,妨礙學(xué)生創(chuàng)造性的思維活動(dòng)?用已有的經(jīng)驗(yàn)自主建構(gòu)新知是提高學(xué)生學(xué)習(xí)能力的有效途徑,讓學(xué)生獨(dú)立思考、自主探索、促思(促進(jìn)學(xué)生思維發(fā)展)、提能(提高學(xué)習(xí)能力)是我的教學(xué)策略主要內(nèi)容。至于這兩種方法孰重孰輕,的確難以定論。實(shí)際上,對(duì)于數(shù)字較小的數(shù)(口訣表內(nèi)的),用乘法來(lái)求因數(shù)還是比較容易,但是超出口訣表范圍的數(shù)用除法則更能顯示出它的優(yōu)勢(shì),如求54的因數(shù)有哪些?學(xué)生要直接找出2和幾相乘得54,3和幾相乘得54,4和幾相乘得54,顯然加大了思維難度,如用除法不是更簡(jiǎn)單直接一些嗎?學(xué)生的學(xué)習(xí)潛力是巨大的,教師是學(xué)生學(xué)習(xí)的引領(lǐng)者,因此教師的觀念和行為決定了學(xué)生的學(xué)習(xí)方式和結(jié)果,所以我認(rèn)為教師要專研教材,充分利用教材,根據(jù)學(xué)生的實(shí)際情況,創(chuàng)造性地使用教材,為學(xué)生能力的發(fā)展提供素材和創(chuàng)造條件,真正實(shí)現(xiàn)學(xué)生學(xué)習(xí)的主體地位。
學(xué)生在找一個(gè)數(shù)的因數(shù)時(shí)最常犯的錯(cuò)誤就是漏找,即找不全。學(xué)生怎樣按一定順序找全因數(shù)這也正是本課教學(xué)的難點(diǎn)。所以在學(xué)生交流匯報(bào)時(shí),我結(jié)合學(xué)生所敘思維過(guò)程,相機(jī)引導(dǎo)并形成有條理的板書(shū),如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。這樣的板書(shū)幫助學(xué)生有序的思考,形成明晰的解題思路的作用是毋庸質(zhì)疑的。教師能像教材中那樣一頭一尾地成對(duì)板書(shū)因數(shù),這樣既不容易寫(xiě)漏,而且學(xué)生么隨著流程的進(jìn)行,勢(shì)必會(huì)感受到越往下找,區(qū)間越小,需要考慮的數(shù)也就越少。當(dāng)找到兩個(gè)相鄰的自然數(shù)時(shí),他們自然就不會(huì)再找下去了。書(shū)寫(xiě)格式這一細(xì)節(jié)的教學(xué),既避免了教師羅嗦的講解,又有效突破了教學(xué)難點(diǎn),我相信像這樣潤(rùn)物無(wú)聲的細(xì)節(jié),無(wú)論于學(xué)生、于課堂都是有利無(wú)弊的。
倍數(shù)和因數(shù)教學(xué)反思7
XXXX小學(xué) XXXXX
教學(xué)內(nèi)容:教材例1、例2
教學(xué)目標(biāo)
1.知識(shí)與技能:讓學(xué)生初步理解因數(shù)和倍數(shù)的概念,掌握找因數(shù)和倍數(shù)的方法。學(xué)會(huì)用列舉法找一個(gè)數(shù)的因數(shù)和倍數(shù)。
2.過(guò)程與方法:借助直觀圖,先引導(dǎo)學(xué)生觀察后列出乘法算式,最后結(jié)合乘法算式來(lái)理解因數(shù)與倍數(shù)的概念。
3.情感、態(tài)度與價(jià)值觀:理解因數(shù)和倍數(shù)的意義能及兩者之間相互依存的關(guān)系。
教學(xué)重點(diǎn):理解因數(shù)和倍數(shù)的概念。
教學(xué)難點(diǎn):掌握求一個(gè)數(shù)的因數(shù)和倍數(shù)的方法。
教學(xué)方法:?jiǎn)l(fā)式教學(xué)法、指導(dǎo)自主學(xué)習(xí)法。
教學(xué)準(zhǔn)備:多媒體。
教學(xué)過(guò)程:
一、新課導(dǎo)入:
1.出示教材第5頁(yè)例1。
12÷2=6 9÷5=1.830÷6=5 2÷3=0.6
26÷8=3.5 19÷7≈2.7120÷10=2 21÷21=163÷9=7
(1)觀察: 引導(dǎo)觀察例1中的算式,你發(fā)現(xiàn)了什么?(都是除法算式)
(2)分類:你能把上面的除法算式分類嗎?
學(xué)生分類后,教師組織學(xué)生交流,引導(dǎo)學(xué)生根據(jù)是否整除分為以下兩類
第一類 12÷2=620÷10=2 30÷6=5 21÷21=1 63÷9=7 第二類 9÷5=1.8 19÷7≈2.71 2÷3=0.626÷8=3.25
2.引入課題。這節(jié)課我們就來(lái)學(xué)習(xí)有關(guān)數(shù)的整除的相關(guān)知識(shí)。(板書(shū)課題:因數(shù)和倍數(shù))
二、探索新知:
。ㄒ唬、明確因數(shù)與倍數(shù)的意義。(教學(xué)例1)
1. 教師引導(dǎo)。教師指出:在整數(shù)除法中,如果商是整數(shù)而沒(méi)有余數(shù),我們
就說(shuō)被除數(shù)是除數(shù)和商的倍數(shù),除數(shù)和商是被除數(shù)的因數(shù)。例如:12÷2=6,我們說(shuō)12是2和6的倍數(shù),2和6是12的因數(shù)。
2. 學(xué)生嘗試。
教師讓學(xué)生說(shuō)一說(shuō)第一類的每個(gè)算式中,誰(shuí)是誰(shuí)的因數(shù)?誰(shuí)是誰(shuí)的倍數(shù)?先同桌互相說(shuō)一說(shuō),再組織全班交流。
3. 深化認(rèn)識(shí)。師:通過(guò)剛才的說(shuō)一說(shuō)活動(dòng),你發(fā)現(xiàn)了什么?
引導(dǎo)學(xué)生體會(huì):因數(shù)和倍數(shù)雖是兩個(gè)不同的概念,但又是相互依存的,二者不能單獨(dú)存在。我們不能說(shuō)誰(shuí)是因數(shù),誰(shuí)是倍數(shù),而應(yīng)該說(shuō)誰(shuí)是誰(shuí)的因數(shù),誰(shuí)是誰(shuí)的倍數(shù)。例如,30÷6=5,30是6和5的倍數(shù),6和5是30的因數(shù)。教師強(qiáng)調(diào),并讓學(xué)生注意:為了方便,在研究因數(shù)和倍數(shù)的時(shí)候,我們所說(shuō)的數(shù)指的是自然數(shù)(一般不包括O)。
4. 即時(shí)練習(xí)。指導(dǎo)學(xué)生完成教材第5頁(yè)“做一做”。
小結(jié):如果a÷b =c(a,b,c均是不為0的自然數(shù)),那么a就是b和c的倍數(shù),b和c是a的因數(shù)。因數(shù)和倍數(shù)是相互依存的。
(二)、探索找一個(gè)數(shù)因數(shù)的方法。(教學(xué)例2)
1. 出示例2:18的因數(shù)有哪幾個(gè)?
(1) 學(xué)生獨(dú)立思考。
師:根據(jù)因數(shù)和倍數(shù)的意義,想一想18除以哪些整數(shù)的結(jié)果是整數(shù)。
18÷1=18,l和18是18的因數(shù);18÷2=9, 2和9是18的因數(shù);18÷3=6, 3和6是18的因數(shù)。引導(dǎo)學(xué)生把18的因數(shù)按從小到大的順序排列,每?jī)蓚(gè)因數(shù)之間用逗號(hào)隔開(kāi),全部寫(xiě)完后用句號(hào)結(jié)束,即18的因數(shù)有:1,2,3,6,9 ,18。
(2)小組合作交流。交流時(shí)教師要讓學(xué)生說(shuō)明找的方法,引導(dǎo)學(xué)生認(rèn)識(shí):只要想18除以哪些整數(shù)的結(jié)果是整數(shù),并且要從1開(kāi)始,一對(duì)一對(duì)地找,避免遺漏。如果學(xué)生還有其他想法,只要合理,教師都應(yīng)給予肯定。
(3)采用集合圖的方法。
教師指出也可用右面的集合圖來(lái)表示18的全部因數(shù)。明確:用圖示法表示18的因數(shù)時(shí),先畫(huà)一個(gè)橢圓,在橢圓的上面寫(xiě)上“18的因數(shù)”,再把18的因數(shù)按從小到大的順序有規(guī)律地寫(xiě)在橢圓里,每?jī)蓚(gè)因數(shù)之間也用逗號(hào)隔開(kāi),全部寫(xiě)完后不加句號(hào)。
(4)練習(xí)。讓學(xué)生找出30的因數(shù)和36的因數(shù),并組織交流。
30的因數(shù)有1,2,3,5,6,10,15,30。
36的因數(shù)有1,2,3,4,6,9,12,18,36。
三、鞏固練習(xí)
指導(dǎo)學(xué)生完成教材“練習(xí)二”第1、6題。學(xué)生獨(dú)立完成全部練習(xí)后教師組織學(xué)生進(jìn)行集體證正。
四、課堂小結(jié)
師:通過(guò)本節(jié)課的學(xué)習(xí),你有什么收獲?
板書(shū)設(shè)計(jì):
因數(shù)和倍數(shù)
12÷2=6 12是2和6的倍數(shù)
2和6是12的因數(shù) 18的因數(shù)有1,2,3,6,9,18。
一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的,一個(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無(wú)限的。
作業(yè):教材第7頁(yè)“練習(xí)二”第2(1)題。
第二單元:因數(shù)和倍數(shù)
第二課時(shí):因數(shù)與倍數(shù)(2)
教學(xué)內(nèi)容:教材P6例3及練習(xí)二第2(1)、3~8題。
教學(xué)目標(biāo):
知識(shí)與技能:通過(guò)學(xué)習(xí),使學(xué)生能自主探究,找出求一個(gè)數(shù)的倍數(shù)的方法。 過(guò)程與方法:結(jié)合具體情境,使學(xué)生進(jìn)一步認(rèn)識(shí)自然數(shù)之間存在因數(shù)和倍數(shù)的關(guān)系,掌握求一個(gè)數(shù)的因數(shù)和倍數(shù)的方法。
情感、態(tài)度與價(jià)值觀:初步學(xué)會(huì)從數(shù)學(xué)的角度提出問(wèn)題、理解問(wèn)題,并能用所學(xué)知識(shí)解決問(wèn)題。在解決問(wèn)題的過(guò)程中,培養(yǎng)學(xué)生概括、分析和比較的能力,使學(xué)生體會(huì)數(shù)學(xué)知識(shí)的內(nèi)在聯(lián)系。
教學(xué)重點(diǎn):掌握求一個(gè)數(shù)的倍數(shù)的`方法。
教學(xué)難點(diǎn):理解因數(shù)和倍數(shù)兩者之間的關(guān)系。
教學(xué)方法:?jiǎn)l(fā)式教學(xué)法、指導(dǎo)自主學(xué)習(xí)法。
教學(xué)準(zhǔn)備:多媒體。
教學(xué)過(guò)程:
一、復(fù)習(xí)導(dǎo)入
10,28,42的因數(shù)有哪些?你是用什么方法找出這些數(shù)的因數(shù)個(gè)數(shù)的?一個(gè)數(shù)的因數(shù)中,最大的是幾?最小的是幾?
二、探索新知
1.探索找倍數(shù)的方法。(教學(xué)例3)
出示例3:2的倍數(shù)有哪些?
師:你會(huì)找2的倍數(shù)嗎?給你們1分鐘的時(shí)間,看誰(shuí)寫(xiě)得又對(duì)、又快、又多!準(zhǔn)備好了嗎?開(kāi)始!
師:時(shí)間到,你寫(xiě)了多少個(gè)2的倍數(shù)?生1:15個(gè)。生2:24個(gè)。
師:大家都是用的什么方法呢?
生1:我是用乘法口訣,一二得二,二二得四……這樣寫(xiě)下去的。
生2:我也是用乘法,用2去乘1、乘2……
師:哪些同學(xué)也是用乘法做的?
師:你們都是用2去乘一個(gè)數(shù),所得的積就是2的倍數(shù)。還有不同的方法嗎?
生3:我用的是除法,用2÷2=1,4÷2=2 6÷2=3??依次除下去。
師:很好!如果給你更長(zhǎng)的時(shí)間,你能把2的倍數(shù)全部寫(xiě)出來(lái)嗎?
師:為什么?(因?yàn)?的倍數(shù)有無(wú)數(shù)個(gè))
師:怎么辦?(用省略號(hào))
師:通過(guò)交流,你有什么發(fā)現(xiàn)?
引導(dǎo)學(xué)生初步體會(huì)2的倍數(shù)的個(gè)數(shù)是無(wú)限的。
追問(wèn):你能用集合圖表示2的倍數(shù)嗎?
學(xué)生填完后,教師組織學(xué)生進(jìn)行核對(duì)。
(4)即時(shí)練習(xí)。讓學(xué)生找出3的倍數(shù)和5的倍數(shù),并組織交流。學(xué)生舉例時(shí)可能會(huì)產(chǎn)生錯(cuò)誤,教師要引導(dǎo)學(xué)生根據(jù)錯(cuò)例進(jìn)行適時(shí)剖析。
4.反思提煉。師:從前面找因數(shù)和倍數(shù)的過(guò)程中,你有什么發(fā)現(xiàn)?
先讓學(xué)生在小組內(nèi)交流,再組織全班集體交流,通過(guò)全班交流,引導(dǎo)學(xué)生認(rèn)識(shí)以下三點(diǎn):
(1)一個(gè)數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。
(2)一個(gè)數(shù)的最小倍數(shù)是它本身,沒(méi)有最大倍數(shù)。
(3)一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的,一個(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無(wú)限的。
三、鞏固提升
1.指導(dǎo)學(xué)生完成教材第7~8頁(yè)“練習(xí)二”第4、5、6、7題。
學(xué)生獨(dú)立完成全部練習(xí)后教師組織學(xué)生進(jìn)行集體證正。
集體訂正時(shí),教師著重引導(dǎo)學(xué)生認(rèn)識(shí)以下幾點(diǎn):
(1)第4題“15的因數(shù)有哪些?”和“15是哪些數(shù)的倍數(shù)”答案是一樣的。
(2)第5題中的第(2)小題是錯(cuò)的,因?yàn)橐粋(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無(wú)限的,第(4)小題也是錯(cuò)的,因?yàn)樵谘芯恳驍?shù)和倍數(shù)時(shí),我們所說(shuō)的數(shù)指的是自然數(shù),不含小數(shù)。
(3)思考題:兩數(shù)如果都是7(或9)倍數(shù),它們的和也一定是7(或9)的倍數(shù),即如果兩數(shù)都是n的倍數(shù),它的和也是n的倍數(shù)。
2.利用求倍數(shù)的方法解決生活中的實(shí)際問(wèn)題
出示:媽媽買(mǎi)來(lái)幾個(gè)西瓜,2個(gè)2個(gè)地?cái)?shù),正好數(shù)完,5個(gè)5個(gè)地?cái)?shù),也正好數(shù)完。這些西瓜最少有多少個(gè)?
理解題意,分析解答。
教師提示“2個(gè)2個(gè)地?cái)?shù),正好數(shù)完,說(shuō)明西瓜的個(gè)數(shù)是2的倍數(shù),5個(gè)5
倍數(shù)和因數(shù)教學(xué)反思8
《因數(shù)和倍數(shù)》是人教版小學(xué)數(shù)學(xué)五年級(jí)下冊(cè)的知識(shí)點(diǎn),主要教學(xué)因數(shù)和倍數(shù)的認(rèn)識(shí),以及找一個(gè)數(shù)的因數(shù)和倍數(shù)的方法!兑驍(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。
。1)新課標(biāo)教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的學(xué)習(xí),而是反其道而行之,通過(guò)乘法算式來(lái)導(dǎo)入新知。
。2)“約數(shù)”一詞被“因數(shù)”所取代。這樣的變化原因何在?我認(rèn)真研讀教材,通過(guò)學(xué)習(xí)了解到以下信息:鑒于學(xué)生在前面已經(jīng)具備了大量的區(qū)分整除與有余數(shù)除法的知識(shí)基礎(chǔ),對(duì)整除的含義已經(jīng)有了比較清楚的認(rèn)識(shí),不出現(xiàn)整除的定義并不會(huì)對(duì)學(xué)生理解其他概念產(chǎn)生任何影響。因此,本套教材中刪去了“整除”的數(shù)學(xué)化定義,而是借助整除的模式ab=c直接引出因數(shù)和倍數(shù)的概念。
數(shù)學(xué)中的“起始概念”一般比較難教,這部分內(nèi)容學(xué)生初次接觸,對(duì)于學(xué)生來(lái)說(shuō)是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實(shí)生活中又不經(jīng)常接觸,對(duì)這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個(gè)長(zhǎng)期的消化理解的過(guò)程。這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,這節(jié)課帶給我的感想是頗多的,但綜觀整堂課,我覺(jué)得要改進(jìn)的地方還有很多,我只有不斷地進(jìn)行反思,才能不斷地完善思路,最終才能有所悟,有所長(zhǎng)。下面就說(shuō)說(shuō)我對(duì)本課在教學(xué)設(shè)計(jì)上的反思和一些初淺的想法。
一、教學(xué)過(guò)程的反思
今天在教學(xué)前,我讓學(xué)生學(xué)說(shuō)話,就是培養(yǎng)學(xué)生對(duì)語(yǔ)言的概括能力和對(duì)事物間關(guān)系的理解能力。于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的因數(shù)和倍數(shù),這樣設(shè)計(jì)自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系,從而使學(xué)生更深一步的認(rèn)識(shí)因數(shù)和倍數(shù)的關(guān)系。層層推進(jìn),引入教學(xué),留下懸念,充分調(diào)動(dòng)了學(xué)生的積極性和求知欲。在認(rèn)識(shí)“因數(shù)、倍數(shù)”時(shí),不再運(yùn)用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認(rèn)知難度,雖然課本沒(méi)出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。本課的教學(xué)重點(diǎn)是求一個(gè)數(shù)的因數(shù),在學(xué)生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關(guān)系的基礎(chǔ)上,對(duì)學(xué)生而言,怎樣求一個(gè)數(shù)的因數(shù),難度并不算大。
在教學(xué)時(shí),先讓學(xué)生“用12個(gè)同樣大小的正方形,擺成一個(gè)長(zhǎng)方形,并用乘法算式把自己的擺法表示出來(lái)”,讓學(xué)生動(dòng)手操作、合作交流,怎樣擺,有哪些不同的擺法?先讓學(xué)生小組交流、操作后,以其中的一道乘法算式為例,引出因數(shù)和倍數(shù)的概念。這樣的安排,體現(xiàn)了以學(xué)生為本,用學(xué)生已有的經(jīng)驗(yàn)和動(dòng)手操作能力,很好的調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性和主動(dòng)性。一方面讓學(xué)生樂(lè)于接受,是學(xué)生在展示自己的想法,老師僅僅是組織者;另一方面培養(yǎng)了學(xué)生善于觀察和傾聽(tīng)他人的想法的良好學(xué)習(xí)態(tài)度。
對(duì)于找一個(gè)數(shù)的倍數(shù)比找一個(gè)數(shù)的因數(shù)的方法要容易些,所以我先教學(xué)如何找一個(gè)數(shù)的倍數(shù),在學(xué)生學(xué)會(huì)了找一個(gè)數(shù)的倍數(shù)的方法基礎(chǔ)上,再教學(xué)如何找一個(gè)數(shù)的因數(shù),這樣教學(xué)便于學(xué)生自己探索并總結(jié)歸納出找一個(gè)數(shù)的因數(shù)的方法,體現(xiàn)了讓學(xué)生自主學(xué)習(xí)。
在處理本節(jié)課的難點(diǎn)“找36的因數(shù)”時(shí),我原來(lái)是放手讓學(xué)生自己去找的。結(jié)果試時(shí)很多學(xué)生沒(méi)有頭緒,無(wú)從下手。時(shí)間倒是花去不少,可方法卻沒(méi)有多少可行的。我靜下心來(lái)尋找原因,找一個(gè)的因數(shù)是學(xué)生以前從未遇到過(guò)的問(wèn)題,自然不知道如何解決。再加上找一個(gè)數(shù)的因數(shù)比找一個(gè)數(shù)的倍數(shù)要難得多,我這樣貿(mào)然地放手,學(xué)生當(dāng)然不知所措了。后來(lái),在處理找36的因數(shù)時(shí),如何做到既不重復(fù)又不遺漏地找36的因數(shù)?我認(rèn)為要對(duì)學(xué)生扶放得當(dāng),要有適當(dāng)?shù)胤觯瑢W(xué)生才能探索出方法。于是,我讓學(xué)生回憶剛才的幾道乘法算式,然后把找一個(gè)數(shù)的倍數(shù)的方法有效的遷移到找一個(gè)數(shù)的因數(shù)中。果然學(xué)生知道了該如何思考后,效果好了很多。在這個(gè)學(xué)習(xí)活動(dòng)環(huán)節(jié)中,我留給了學(xué)生較充分的思維活動(dòng)的空間,有了自由活動(dòng)的空間,才會(huì)有思維創(chuàng)造的火花,才能體現(xiàn)教育活動(dòng)的終極目標(biāo)。根據(jù)學(xué)生的實(shí)際情況,教學(xué)找一個(gè)數(shù)的因數(shù)的方法,雖然學(xué)生不能有序地找出來(lái),但是基本能全部找到,再此基礎(chǔ)上讓體會(huì)有序找一個(gè)數(shù)因數(shù)的辦法學(xué)生容易接受,這樣的設(shè)計(jì)由易到難,由淺入深,我覺(jué)得能起到鞏固新知,發(fā)展思維的'效果。
二、教法的運(yùn)用實(shí)踐
1、“因數(shù)與倍數(shù)”概念的數(shù)的應(yīng)用范圍的規(guī)定直接運(yùn)用講述法。對(duì)與本知識(shí)點(diǎn)的概念是人為規(guī)定的一個(gè)范圍,因此,對(duì)于學(xué)生和第一
接觸的印象是沒(méi)有什么可以探究和探索的要求,而且給學(xué)生一個(gè)直觀的感受!耙驍(shù)與倍數(shù)”的運(yùn)用范圍就是在非0自然數(shù)的范疇之內(nèi),與小數(shù)無(wú)關(guān),與分?jǐn)?shù)無(wú)關(guān),與負(fù)數(shù)無(wú)關(guān)(雖沒(méi)學(xué),但有小部分學(xué)生了解)。同時(shí)強(qiáng)調(diào)——非0——因?yàn)?乘任何數(shù)得0,0除以任何數(shù)得0。研究它的因數(shù)與倍數(shù)是沒(méi)有意義。我得到的經(jīng)驗(yàn)就是對(duì)于數(shù)學(xué)當(dāng)中規(guī)定性的概念用直接講述法,讓學(xué)生清晰明確。因此,用直接導(dǎo)入法,先復(fù)習(xí)自然數(shù)的概念,再寫(xiě)出乘法算式3×4=12,說(shuō)明在這個(gè)算式中,3和4是12的因數(shù),12是3和4的倍數(shù)。
2、在進(jìn)行延續(xù)性教學(xué)中,可以讓學(xué)生探究怎么樣找一個(gè)數(shù)的因數(shù)和倍數(shù),在板書(shū)要講究一個(gè)格式與對(duì)稱性,這樣在對(duì)學(xué)生發(fā)現(xiàn)倍數(shù)與因數(shù)個(gè)數(shù)的有限與無(wú)限的對(duì)比,再就是發(fā)現(xiàn)一個(gè)數(shù)的因數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。一個(gè)數(shù)的倍數(shù)的最小的倍數(shù)是它本身,而沒(méi)有最大的倍數(shù)。這些都是上課時(shí)應(yīng)該要注意的細(xì)節(jié),這對(duì)于學(xué)生良好的學(xué)習(xí)慣的培養(yǎng)也是很重要的
新課標(biāo)實(shí)施的過(guò)程是一個(gè)不斷學(xué)習(xí)、探究、研究和提高的過(guò)程,在這個(gè)過(guò)程中,需要我們認(rèn)真反思、獨(dú)立思考、交流探討,學(xué)習(xí)研究,與學(xué)生平等對(duì)話,在實(shí)踐和探索中不斷前進(jìn)。
倍數(shù)和因數(shù)教學(xué)反思9
1倍數(shù)和因數(shù)這一內(nèi)容與原來(lái)教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎(chǔ)上認(rèn)識(shí)因數(shù)倍數(shù)。而這里的處理的方法有所不同,在這之前學(xué)生還沒(méi)有學(xué)習(xí)小數(shù)乘除法,只接觸過(guò)整數(shù)乘除法,因此教材通過(guò)用12個(gè)小正方形拼長(zhǎng)方形并寫(xiě)乘法算式來(lái)引入因數(shù)和倍數(shù)。
2要求學(xué)生用乘法算式表示自己的長(zhǎng)方形的不同擺法,幫助學(xué)生建立起乘法意義的表象,為后面利用乘法找因數(shù)和倍數(shù)埋下伏筆。
3重視說(shuō)的訓(xùn)練,要求具體明確!罢l(shuí)是誰(shuí)的倍數(shù),誰(shuí)是誰(shuí)的因數(shù)”當(dāng)學(xué)生說(shuō)到12*1=12時(shí),感到有些拗口,教師即時(shí)鼓勵(lì),體現(xiàn)了數(shù)學(xué)的人文精神和不放過(guò)任何細(xì)節(jié)的作風(fēng)。
4如何做到既不重復(fù)又不遺漏地找36的因數(shù),對(duì)于剛剛對(duì)倍數(shù)因數(shù)有個(gè)感性認(rèn)識(shí)的.學(xué)生來(lái)說(shuō)有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢(shì)。先讓學(xué)生自己獨(dú)立找36的因數(shù),我巡視了一下五分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫(xiě)的算式不按一定的次序進(jìn)行。接著讓學(xué)生在小組里討論兩個(gè)問(wèn)題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過(guò)程中,學(xué)生對(duì)自己剛才的方法進(jìn)行反思,吸收同伴中好的方法,這不老師給予有有效得多。
5練習(xí)形式活潑多樣,即顛覆傳統(tǒng)又扎實(shí)訓(xùn)練。
倍數(shù)和因數(shù)教學(xué)反思10
北師大版五年級(jí)數(shù)學(xué)上、第三單元第一節(jié)《倍數(shù)與因數(shù)》是一節(jié)概念課。關(guān)于“倍數(shù)和因數(shù)”教材中沒(méi)有寫(xiě)出具體的數(shù)學(xué)好處,只是借助乘法算式加以說(shuō)明,進(jìn)而讓學(xué)生探究尋找一個(gè)數(shù)的倍數(shù)和因數(shù)。通過(guò)備課,我梳理出這樣一個(gè)教學(xué)脈絡(luò):乘法算式——倍數(shù)和因數(shù)——乘法算式——找一個(gè)數(shù)的倍數(shù)。從教材本身來(lái)看,這部分知識(shí)對(duì)于五年級(jí)學(xué)生而言,沒(méi)有什么生活經(jīng)驗(yàn),也談不上有什么新興趣,是一節(jié)數(shù)學(xué)味很濃的概念課。如何借助教材這一載體,讓學(xué)生在互動(dòng)、探究中掌握相應(yīng)的知識(shí),讓乏味變成有味呢?我從以下兩個(gè)方面談一點(diǎn)教學(xué)體會(huì)。
一、設(shè)疑遷移,點(diǎn)燃學(xué)習(xí)的火花。
良好的開(kāi)頭是成功的一半。我采用一道腦筋急轉(zhuǎn)彎題作為談話引入課題,不僅僅能夠調(diào)動(dòng)學(xué)生的學(xué)習(xí)興趣,看似不相關(guān)的兩件事例中隱藏著共同點(diǎn):一一對(duì)應(yīng)、相互依存。對(duì)感知倍數(shù)和因數(shù)進(jìn)行有效的.滲透和拓展。
教學(xué)找一個(gè)數(shù)的倍數(shù)時(shí),我依據(jù)學(xué)情,設(shè)計(jì)讓學(xué)生獨(dú)立探究尋找2的倍數(shù)、5的倍數(shù),學(xué)生發(fā)現(xiàn)2的倍數(shù)、5的倍數(shù)寫(xiě)不完時(shí),通過(guò)討論,認(rèn)為用省略號(hào)表示比較恰當(dāng),用語(yǔ)文中的一個(gè)標(biāo)點(diǎn)符號(hào)解決了數(shù)學(xué)問(wèn)題,自我發(fā)現(xiàn)問(wèn)題自我解決,學(xué)生從中體驗(yàn)到解決問(wèn)題的愉快感和掌握新知的成就感。
二、滲透學(xué)法,構(gòu)成學(xué)習(xí)的技能。
由于一個(gè)數(shù)倍數(shù)的個(gè)數(shù)是無(wú)限的,那么如何讓學(xué)生體會(huì)“無(wú)限”、又如何有序?qū)懗鰜?lái)呢?我讓學(xué)生嘗試說(shuō)出3的倍數(shù)。學(xué)生找倍數(shù)的方法有:依次加3、依次乘1、2、3……、用乘法口訣等等。我組織學(xué)生展開(kāi)評(píng)價(jià),有的學(xué)生認(rèn)為:從小到大依次寫(xiě),因?yàn)橛行,所以覺(jué)得好;有的學(xué)生認(rèn)為:用乘法算式寫(xiě)倍數(shù),既快而且不受前面倍數(shù)的影響,能夠很快地找到第幾個(gè)倍數(shù)是多少,因?yàn)楹?jiǎn)捷正確率高所以覺(jué)得好。如此的交流雖然花費(fèi)了“寶貴”的學(xué)習(xí)時(shí)光,但是學(xué)生從中能體會(huì)到學(xué)習(xí)的方法,發(fā)展了思維,這才是最寶貴的。正所謂沒(méi)有一路上的山花爛漫,哪有山頂上的風(fēng)光無(wú)限。
三、學(xué)練結(jié)合,及時(shí)把握學(xué)生學(xué)情。
在學(xué)生通過(guò)具體例子初步認(rèn)識(shí)了倍數(shù)和因數(shù)以后,通過(guò)超多的練習(xí)讓學(xué)生在練習(xí)中感悟,練習(xí)中加深理解概念;在探究出找倍數(shù)的方法以后,及時(shí)讓學(xué)生寫(xiě)出2的倍數(shù)、5的倍數(shù),從而引導(dǎo)學(xué)生發(fā)現(xiàn)一個(gè)數(shù)的倍數(shù)的特點(diǎn),并適時(shí)進(jìn)行針對(duì)性練習(xí),鞏固新知。
課尾,我設(shè)計(jì)了四道達(dá)標(biāo)檢測(cè)練習(xí),將整堂課的資料進(jìn)行整理和概括,對(duì)易混淆的概念加以比較,對(duì)本節(jié)課重要知識(shí)點(diǎn)進(jìn)行檢測(cè),及時(shí)掌握了學(xué)生的學(xué)情。
縱觀整節(jié)課,學(xué)生在學(xué)習(xí)過(guò)程中自始至終處于主體地位,嘗試練習(xí)、自主探索、解決問(wèn)題,教師只是加以引導(dǎo),以合作者的身份參與其中。學(xué)生在思維上得到了訓(xùn)練,探究問(wèn)題、尋求解決問(wèn)題策略的潛力也會(huì)逐步得到提高。
倍數(shù)和因數(shù)教學(xué)反思11
本節(jié)課的內(nèi)容涉及的概念非常多,即抽象又容易混淆,如何使學(xué)生更加容易理解這些概念,理清概念之間的相互聯(lián)系,構(gòu)建知識(shí)之間的網(wǎng)絡(luò)體系是本節(jié)課教學(xué)的重難點(diǎn),同時(shí)學(xué)會(huì)整理知識(shí)的方法更是本節(jié)課教學(xué)的靈魂。
成功之處:
1、構(gòu)建知識(shí)網(wǎng)絡(luò)體系,理清知識(shí)之間的相互聯(lián)系。在教學(xué)中,我首先通過(guò)一個(gè)聯(lián)想接龍的游戲調(diào)動(dòng)學(xué)生學(xué)習(xí)的興趣,讓學(xué)生利用因數(shù)和倍數(shù)單元的知識(shí)來(lái)描述數(shù)字2,學(xué)生非常容易想到2是最小的質(zhì)數(shù)、2是偶數(shù)、2的因數(shù)是1和2、2的倍數(shù)有2,4,6…、2的倍數(shù)特征是個(gè)位是0、2、4、6、8的數(shù),通過(guò)學(xué)生的回答教師及時(shí)抓住其中的關(guān)鍵詞引出本單元的所有概念:因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)、奇數(shù)、偶數(shù)、公因數(shù)、最大公因數(shù)、公倍數(shù)、最小公倍數(shù)、2的倍數(shù)特征、3的倍數(shù)特征、5的倍數(shù)的特征。如何整理使這些凌亂的概念變得更加簡(jiǎn)潔、更加有序、更加能體現(xiàn)知識(shí)之間的聯(lián)系呢?通過(guò)學(xué)生課前的整理發(fā)揮小組的合作交流作用,在相互交流中,學(xué)生相互學(xué)習(xí)、相互借鑒,逐漸對(duì)這些概念的聯(lián)系有了更進(jìn)一步的認(rèn)識(shí),然后通過(guò)選取幾名同學(xué)的作品進(jìn)行展評(píng),最后教師和學(xué)生共同進(jìn)行整理和調(diào)整,最終來(lái)完善知識(shí)之間的網(wǎng)絡(luò)體系。
2、教給學(xué)生整理知識(shí)的方法。在教學(xué)中,是授人以魚(yú)不如授人以漁,作為教師莫過(guò)于教給學(xué)生必備的學(xué)習(xí)方法。在這節(jié)課的整理復(fù)習(xí)中,課前我讓學(xué)生把第二單元的關(guān)于因數(shù)和倍數(shù)的概念進(jìn)行了匯總,涉及的概念有如下幾個(gè):因數(shù)、倍數(shù)、公因數(shù)、公倍數(shù)、最大公因數(shù)、最小公倍數(shù)、質(zhì)數(shù)、合數(shù)、奇數(shù)、偶數(shù)、2的倍數(shù)特征、3的倍數(shù)特征、5的倍數(shù)特征,并提出具體的要求:一是觀察分析這些概念,哪些概念之間有著密切的聯(lián)系;二是根據(jù)這些概念之間的緊密聯(lián)系可以分為幾類;三是用你自己喜歡的方法表示出來(lái),可以以數(shù)學(xué)手抄報(bào)的形式來(lái)呈現(xiàn)。通過(guò)課前的`設(shè)計(jì),我事先搜集了一些有代表性的作品放在課件中,讓同學(xué)們進(jìn)行欣賞,相互取長(zhǎng)補(bǔ)短,共同學(xué)習(xí),共同進(jìn)步。課堂中在小組討論交流的過(guò)程后,教師與學(xué)生共同對(duì)本單元的概念進(jìn)行了整理和總結(jié),并得出知識(shí)網(wǎng)絡(luò)圖。
縱觀本節(jié)課的設(shè)計(jì),就是通過(guò)學(xué)生的聯(lián)想,回憶前面學(xué)過(guò)的知識(shí),并在頭腦中構(gòu)建知識(shí)之間的相互聯(lián)系,從而揭示出這個(gè)知識(shí)網(wǎng)絡(luò)圖就是思維導(dǎo)圖。掌握了這種方法,就可以把數(shù)學(xué)中的每一個(gè)單元進(jìn)行整理,也可以把每一冊(cè)知識(shí)進(jìn)行整理,還可以把小學(xué)數(shù)學(xué)的知識(shí)進(jìn)行系統(tǒng)的整理,從而讓學(xué)生體會(huì)到思維導(dǎo)圖方法的強(qiáng)大之處,學(xué)生在感嘆這種方法的魅力同時(shí),并把這種方法推廣到其它學(xué)科,讓學(xué)生真正掌握知識(shí)整理的方法,并在以后的單元知識(shí)整理中加以運(yùn)用。
3、在練習(xí)中進(jìn)一步對(duì)概念進(jìn)行有針對(duì)性的復(fù)習(xí)。在練習(xí)環(huán)節(jié)中,我根據(jù)這些概念設(shè)計(jì)了一些相應(yīng)的練習(xí)。目的是以練習(xí)促?gòu)?fù)習(xí),在練習(xí)中更好的體會(huì)這些概念的具體含義,加深學(xué)生對(duì)概念的理解和掌握,學(xué)生在練習(xí)的過(guò)程中不僅掌握了知識(shí)整理的方法,還深刻地理解了知識(shí)的來(lái)龍去脈,對(duì)每個(gè)知識(shí)點(diǎn)的概念理解也更加清晰了,起到了復(fù)習(xí)回顧舊知識(shí)的作用。
不足之處:
1、個(gè)別學(xué)生在展評(píng)中不會(huì)去評(píng)價(jià),只是從設(shè)計(jì)的美觀上去思考,而沒(méi)有從體現(xiàn)知識(shí)之間的聯(lián)系上去進(jìn)行說(shuō)明,在這一點(diǎn)上教師還要加以引導(dǎo)。
2、出現(xiàn)個(gè)別學(xué)生由于第二單元的知識(shí)是在開(kāi)學(xué)初學(xué)習(xí)的,有些知識(shí)點(diǎn)已經(jīng)遺忘,導(dǎo)致出現(xiàn)連最小的偶數(shù)是幾都不知道了,因此在學(xué)完每個(gè)單元后要不間斷的進(jìn)行知識(shí)的鞏固和練習(xí)。
3、由于本節(jié)課的知識(shí)點(diǎn)過(guò)于多,練習(xí)的時(shí)間有些不足,導(dǎo)致基本的練習(xí)時(shí)間可以保障,但是需要拓展的知識(shí)沒(méi)有更好的呈現(xiàn)出來(lái)。
再教設(shè)計(jì):
1、抓住數(shù)學(xué)知識(shí)的本質(zhì),美觀的整理形式只是一些外在的,并不是重點(diǎn),注意引導(dǎo)學(xué)生從數(shù)學(xué)的本質(zhì)去思考問(wèn)題,排除數(shù)學(xué)本質(zhì)以外的東西,去引發(fā)思考,從而形成良好的數(shù)學(xué)思維品質(zhì)。
2、還要繼續(xù)深入挖掘數(shù)學(xué)的思想、靈魂和方法,用以指導(dǎo)課堂教學(xué),讓學(xué)生掌握以后學(xué)習(xí)知識(shí)的鑰匙,學(xué)會(huì)開(kāi)啟知識(shí)的大門(mén)。
倍數(shù)和因數(shù)教學(xué)反思12
本單元注意以下幾個(gè)方面的教學(xué),可以促進(jìn)學(xué)生鞏固基礎(chǔ)知識(shí),促進(jìn)學(xué)生發(fā)展基本思維能力。
1.加強(qiáng)概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念,避免死記硬背。
本冊(cè)新教材采用整數(shù)除法的表示形式教學(xué),便于學(xué)生感知因數(shù)和倍數(shù)的本質(zhì)意義。注意因數(shù)與倍數(shù)的相互依存的關(guān)系;質(zhì)數(shù)、合數(shù)與因數(shù)的關(guān)系;偶數(shù)、奇數(shù)與2的倍數(shù)的關(guān)系等,形成概念鏈,依靠理解促進(jìn)記憶!
2.注意培養(yǎng)學(xué)生的抽象概括與歸納推理能力
關(guān)注由從具體到抽象、由特殊到一般的概括、歸納過(guò)程,即從個(gè)別性知識(shí)推出一般性結(jié)論。如質(zhì)數(shù)、合數(shù):寫(xiě)出1——20各數(shù)的因數(shù)進(jìn)行歸納推理,熟悉20以內(nèi)的質(zhì)數(shù),制作100以內(nèi)質(zhì)數(shù)表。
3.教給學(xué)生養(yǎng)成“有序?qū)W習(xí)”的良好學(xué)習(xí)習(xí)慣。
4.加強(qiáng)解決問(wèn)題的教與學(xué),新教材增加了探索兩數(shù)之和的'奇偶性的純數(shù)學(xué)問(wèn)題,可以根據(jù)兩數(shù)之和的奇偶性的規(guī)律推理出兩數(shù)之差、兩數(shù)之積的奇偶性,并滲透解決問(wèn)題的策略。
5.拓展學(xué)生的知識(shí)面。如探究既是2的倍數(shù)又是5的倍數(shù)特征;4的倍數(shù)特征;6的倍數(shù)特征等,開(kāi)拓視野,發(fā)展思維!
倍數(shù)和因數(shù)教學(xué)反思13
《數(shù)學(xué)課程標(biāo)準(zhǔn)》倡導(dǎo)“自主——合作——探究”的學(xué)習(xí)方式,強(qiáng)調(diào)學(xué)習(xí)是一個(gè)主動(dòng)建構(gòu)的過(guò)程。因此,應(yīng)注重培養(yǎng)學(xué)生學(xué)習(xí)的獨(dú)立性和自主性,讓學(xué)生在教師的指導(dǎo)下主動(dòng)地參與學(xué)習(xí),親歷學(xué)習(xí)過(guò)程,從而學(xué)會(huì)學(xué)習(xí)。
1、以“理”為基點(diǎn),將學(xué)生帶入新知的學(xué)習(xí)。
概念教學(xué)重在“理”。學(xué)生理解“因數(shù)”、“倍數(shù)”概念有個(gè)逐步形成的過(guò)程,為了促進(jìn)這一意識(shí)建構(gòu),我先讓學(xué)生通過(guò)自己已有的認(rèn)知結(jié)構(gòu),經(jīng)過(guò)“排列整齊的隊(duì)形——形成乘法算式——抽象出倍數(shù)因數(shù)概念——再由乘法或除法算式——深化理解”,使學(xué)生在輕松、簡(jiǎn)約并充滿自信中學(xué)習(xí)新知,在數(shù)與形的結(jié)合中,深刻體驗(yàn)因數(shù)倍數(shù)的概念。
2、以“序”為站點(diǎn),培養(yǎng)學(xué)生的思維方式。
概念形成得在“序”。學(xué)生對(duì)于概念的形成是一個(gè)由表及里、由形象到抽象的過(guò)程。當(dāng)學(xué)生對(duì)概念有了初步認(rèn)識(shí)后,讓學(xué)生探索如何找一個(gè)數(shù)的倍數(shù)的因數(shù),這既是對(duì)概念內(nèi)涵的深化,也是對(duì)概念外延的探索。這時(shí)思維和排列上的有序性是教學(xué)的關(guān)鍵,也是本節(jié)課的深度之一。在教學(xué)時(shí),分為兩個(gè)層次:第一個(gè)層次是讓學(xué)生在已有的知識(shí)基礎(chǔ)上找12的因數(shù),并在交流中,經(jīng)歷了一個(gè)從無(wú)序到有序、從把握個(gè)別到統(tǒng)攬整體、從思維混沌走向思維清晰的過(guò)程。抓住教學(xué)的難點(diǎn)“如何找全,并且不重復(fù)不遺漏”,讓學(xué)生自由地說(shuō),再引導(dǎo)學(xué)生說(shuō)出想的過(guò)程,并加以調(diào)整。表面看來(lái)僅僅是組合的'變換,實(shí)質(zhì)上是思維的提高和方法的優(yōu)化,并讓學(xué)生在對(duì)比中感受“一對(duì)一對(duì)”找因數(shù)的方法,經(jīng)歷了互相討論、相互補(bǔ)充、對(duì)比優(yōu)化的過(guò)程。第二個(gè)層次是在學(xué)生已經(jīng)有了探索一個(gè)數(shù)因數(shù)的方法,具備了一定有序思考的能力之后,啟發(fā)學(xué)生“能像找因數(shù)那樣有序的找一個(gè)數(shù)的倍數(shù)”,提高了學(xué)生的思維能力。
3、以“思”為落腳點(diǎn),培養(yǎng)學(xué)生發(fā)現(xiàn)思考的能力。
概念的生成重在“思”,規(guī)律的形成重在“觀察”,教師如果能在此恰到好處的“引導(dǎo)”,一定會(huì)讓學(xué)生收獲更多,感悟更多。因此設(shè)計(jì)時(shí),我借助了“找自己學(xué)號(hào)的因數(shù)和倍數(shù)”這個(gè)活動(dòng),在大量的有代表性的例子面前,在學(xué)生親自的嘗試中,在有目的的對(duì)比觀察中,學(xué)生的思維被逐步引導(dǎo)到了最深處,知道了一個(gè)數(shù)的最大因數(shù)和最小倍數(shù)都是它本身,反過(guò)來(lái)也是正確的。教師在這里提供了有效的素材,可操作的素材,促使學(xué)生對(duì)所學(xué)的概念進(jìn)行了有意義的建構(gòu),促進(jìn)和發(fā)展了他們的思維。
倍數(shù)和因數(shù)教學(xué)反思14
《因數(shù)和倍數(shù)》這一教學(xué)內(nèi)容是一節(jié)概念課。教材在引入因數(shù)和倍數(shù)的概念時(shí)是通過(guò)除法算式來(lái)引出整除的概念,每個(gè)除法算式對(duì)應(yīng)著一對(duì)有整除關(guān)系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。數(shù)學(xué)中的“起始概念”一般比較難教,我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。利用一個(gè)簡(jiǎn)單的實(shí)物圖(2行飛機(jī),每行6架)引出一個(gè)乘法算式2×6=12,通過(guò)這個(gè)乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義。使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,用學(xué)生已有的.數(shù)學(xué)知識(shí)引出了新知識(shí),減緩了難度,這一環(huán)節(jié)的教學(xué),我覺(jué)得還是收到了預(yù)設(shè)的效果。
能不重復(fù)、不遺漏、有序地找出一個(gè)數(shù)的因數(shù),是本課的教學(xué)難點(diǎn)。在教學(xué)中,我是這樣設(shè)計(jì)的:在根據(jù)1×12=12,2×6=12,3×4=12三個(gè)乘法算式說(shuō)出了誰(shuí)是誰(shuí)的因數(shù)、誰(shuí)是誰(shuí)的倍數(shù)后,教師緊接著提問(wèn):12的因數(shù)有哪些?學(xué)生看著黑板上的算式很快地找出12的因數(shù),接著再提問(wèn):你是用什么方式找到12的因數(shù)的?在學(xué)生說(shuō)出方法后,為了讓學(xué)生探索出找一個(gè)因數(shù)的方法,我讓學(xué)生自己找一找15的因數(shù)有哪些。預(yù)設(shè)在匯報(bào)時(shí),能借此解決如何有序、不重復(fù)、不遺漏地找出一個(gè)數(shù)的因數(shù)。但在實(shí)際交流時(shí),學(xué)生的方法出現(xiàn)了兩種意見(jiàn),并且各抒己見(jiàn),因?yàn)?5的因數(shù)只有兩對(duì),無(wú)論怎樣找都不會(huì)遺漏。作為老師,我這時(shí)沒(méi)有把我的意見(jiàn)強(qiáng)加給學(xué)生,而是以男女生比賽的形式,讓學(xué)生分別找16、18的所有因數(shù)。由于部分學(xué)生運(yùn)用從小到大一對(duì)一對(duì)地找很快找出這兩個(gè)數(shù)的因數(shù),另一部分卻在無(wú)序的情況下,不是重復(fù)就是遺漏,這樣在比較中,不重復(fù)、不遺漏、有序地找出一個(gè)數(shù)的因數(shù)的方法,學(xué)生就能夠很好地接受并掌握。同時(shí)在練習(xí)中我設(shè)計(jì)了其中一道題是猜我的電話號(hào)碼,激發(fā)起學(xué)生的興趣,我是這樣想的:重在培養(yǎng)學(xué)生善于聯(lián)想,勇于探索的習(xí)慣。由個(gè)體現(xiàn)象聯(lián)想到同類現(xiàn)象并能深入探索,這是創(chuàng)造的源泉。雖然在這個(gè)環(huán)節(jié)上花了比較多的時(shí)間,但對(duì)學(xué)生自主探索、自主學(xué)習(xí)起到了很好的促進(jìn)作用。
這節(jié)課另一個(gè)給我感觸最深的是:就是在引導(dǎo)學(xué)生歸納總結(jié)出一個(gè)數(shù)的因數(shù)的特點(diǎn)時(shí),由于及時(shí)跟上個(gè)性化的語(yǔ)言評(píng)價(jià),激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來(lái)。借助這一學(xué)習(xí)熱情讓學(xué)生自己探索找一個(gè)數(shù)的倍數(shù)的方法。教師相信學(xué)生,學(xué)生學(xué)習(xí)興趣更濃。不僅探討出從小到大找一個(gè)數(shù)的倍數(shù)而且發(fā)現(xiàn)了倍數(shù)的特點(diǎn)。這一環(huán)節(jié)教學(xué)的成功,也使我改變了教學(xué)的觀念——適時(shí)放手,會(huì)看到學(xué)生更精彩的一面。以后教學(xué)需大膽相信學(xué)生,深入鉆研教材,既備教材又了解學(xué)情,作到收放自如,充分發(fā)揮學(xué)生的潛能。
由于本節(jié)課的容量比較大,練習(xí)題設(shè)計(jì)綜合性比較強(qiáng),學(xué)生學(xué)得并不輕松,還存在一小部分學(xué)生沒(méi)有很好地理解因數(shù)與倍數(shù)的關(guān)系。今后,應(yīng)努力改進(jìn)教學(xué)手段,提高學(xué)困生的學(xué)習(xí)效率。
倍數(shù)和因數(shù)教學(xué)反思15
今天這堂課其實(shí)是有點(diǎn)匆忙的。課前的一個(gè)小游戲忘了,忘了讓學(xué)生體會(huì)因數(shù)和倍數(shù)之間的相互聯(lián)系和依存關(guān)系了。明天的課上補(bǔ)上。
滿意的一點(diǎn):模式的提練
在讓學(xué)生根據(jù)算式說(shuō)了誰(shuí)是誰(shuí)的倍數(shù),誰(shuí)是誰(shuí)的因數(shù)之后,出示了想想做做的第一題,我加了一道:A×B=C,并且讓學(xué)生用一道算式提練出因數(shù)和倍數(shù)之間的關(guān)系。結(jié)果學(xué)生都不知道如何表達(dá)。我把算式板書(shū)上黑板上,是因數(shù)×因數(shù)=倍數(shù)。而后,我又轉(zhuǎn)過(guò)去用一道除法算式36÷9=4來(lái)讓學(xué)生找一找誰(shuí)是誰(shuí)的因數(shù),誰(shuí)是誰(shuí)的倍數(shù),學(xué)生的反應(yīng)都不錯(cuò),馬上就明白了因數(shù)和倍數(shù)之間的關(guān)系。
不滿意的地方在于:對(duì)于找出36所有因數(shù)的有序思考沒(méi)有強(qiáng)調(diào)。當(dāng)我讓學(xué)生們自主找出36的所有因數(shù)時(shí),許多學(xué)生就茫然不知所謂,但是他們并不是不懂,只是不知道如何去寫(xiě),所以我在黑板上挑選了一些學(xué)生的作業(yè)加以板書(shū),讓學(xué)生進(jìn)行比較。
如:1、36、2、18、3、12、4、9、6
1、2、3、4、6、9、12、18、36
和36÷1=36,36÷2=18,36÷3=12
36÷4=9,36÷6=6
尤其是最后一種方法,我特別注意讓學(xué)生評(píng)價(jià)一下這種思考方法的正確性。得出結(jié)論是這樣思考是可行的。那么我接著告訴他們,這樣思考的確是可以,不過(guò),缺少的因數(shù)的提取,由此過(guò)渡到評(píng)價(jià)第一種方案和第二種方案,在這兒,我特別示范了一下寫(xiě)因數(shù)的方法,即從兩邊向中間包圍。學(xué)生們?cè)诒容^中找出了寫(xiě)因數(shù)的方法,明白了寫(xiě)出因數(shù)的格式。本來(lái)可以相機(jī)在這一步讓學(xué)生體會(huì)尋找因數(shù)的有序性,結(jié)果一急,只是帶過(guò)了一句。今天在補(bǔ)充習(xí)題上出現(xiàn)了問(wèn)題,我抓了幾個(gè)學(xué)生問(wèn)為什么強(qiáng)調(diào)有序性,學(xué)生告訴我:因?yàn)榭梢钥吹们宄驗(yàn)椴粫?huì)遺漏?雌饋(lái)班上的學(xué)生有這方面的意識(shí),在做題目的時(shí)候還應(yīng)該再稍稍提點(diǎn)一下,應(yīng)該也就不成問(wèn)題了。
《因數(shù)和倍數(shù)的練習(xí)》教學(xué)反思 4月14日
昨天新學(xué)了因數(shù)和倍數(shù),我覺(jué)得課上學(xué)生表現(xiàn)還可以,很會(huì)說(shuō),但到了家自己做家作時(shí),問(wèn)題很多。今天進(jìn)行了練習(xí)后,效果截然不同。我在練習(xí)前,首先對(duì)昨天的內(nèi)容進(jìn)行了復(fù)習(xí)。讓學(xué)生進(jìn)一步明確:1、講因數(shù)和倍數(shù)時(shí)應(yīng)該講清誰(shuí)是誰(shuí)的倍數(shù)或因數(shù)。2、找一個(gè)數(shù)的倍數(shù)和因數(shù)時(shí),倍數(shù)最小的是它本身,其它都比它大,因數(shù)最大的是它本身,其它都比它小,最小是1。學(xué)生書(shū)上練習(xí)時(shí),提醒學(xué)生弄清每題的具體要求,有些題只要寫(xiě)出一個(gè)數(shù)部分的倍數(shù),而有些題需要寫(xiě)出全部的倍數(shù)。有些符合要求的數(shù)不止1個(gè),要盡可能把這些數(shù)都找出來(lái)。但學(xué)生有時(shí)找不全,我就教會(huì)學(xué)生這樣思考:找一個(gè)數(shù)的倍數(shù)時(shí)用乘法,找一個(gè)數(shù)的因數(shù)時(shí)用除法。效果還可以。
今天教學(xué)了因數(shù)和倍數(shù)一課,這節(jié)課的內(nèi)容關(guān)鍵是讓學(xué)生在掌握因數(shù)、倍數(shù)的概念的基礎(chǔ)上學(xué)會(huì)找一個(gè)數(shù)的因數(shù)和倍數(shù)。就總體情況而言教學(xué)效果還可以,但多少還是存在遺憾。
存在問(wèn)題:在寫(xiě)出了算式3*4=12后出示“3是12的因數(shù),4也是12的因數(shù);12是3的倍數(shù),12也是4的倍數(shù)!焙笞寣W(xué)生閱讀,復(fù)述后讓學(xué)生觀察尋找記憶的方法,學(xué)生總結(jié):像這樣的乘法算式我們可以說(shuō)兩個(gè)乘數(shù)都是積的因數(shù),積是兩個(gè)乘數(shù)的倍數(shù)。再讓學(xué)生用因數(shù)、倍數(shù)同桌復(fù)述算式2*6=12,1*12=12中數(shù)與數(shù)的關(guān)系,全班交流復(fù)述,學(xué)生說(shuō)的蠻好的,可是在分層練習(xí)時(shí)再讓學(xué)生描述其他算式中各數(shù)的關(guān)系時(shí),又部分學(xué)生混淆了因數(shù)、倍數(shù)的概念?磥(lái)開(kāi)始的`復(fù)述學(xué)生純粹是無(wú)意識(shí)的模仿,是為模仿而模仿,教師沒(méi)有在學(xué)生模仿復(fù)述后進(jìn)一步讓學(xué)生思考為什么可以這樣描述這些數(shù)之間的關(guān)系,例如:為什么12是3和4的倍數(shù),還能說(shuō)12是2和6的倍數(shù)?……如果加了這層思考,學(xué)生就會(huì)理解只要是兩個(gè)整數(shù)相乘等于12,12就是這兩個(gè)整數(shù)的倍數(shù),這兩個(gè)整數(shù)就都是12的因數(shù)。這樣才能讓學(xué)生真正理解乘法算式中各整數(shù)之間的關(guān)系。
滿意之處:學(xué)生在找一個(gè)數(shù)的因數(shù)和倍數(shù)時(shí)花費(fèi)的時(shí)間不多,但在交流方法時(shí)我舍得花費(fèi)較多的時(shí)間讓學(xué)生比較各自的方法,在此基礎(chǔ)上選出不會(huì)重復(fù)、遺漏的簡(jiǎn)便方便用學(xué)生的名字命名這些方法。再讓學(xué)生分別使用這些方法尋找,真實(shí)感受這些方法的好處。學(xué)生郵箱比較深刻,在后面的分層練習(xí)和檢測(cè)中沒(méi)有學(xué)生出現(xiàn)漏或重復(fù)的,而且速度也很快。學(xué)生的積極性很高,學(xué)生的積極性的大小與他獲得成功的概率的大小有直接關(guān)系的。
【倍數(shù)和因數(shù)教學(xué)反思】相關(guān)文章:
倍數(shù)和因數(shù)的教學(xué)反思03-06
因數(shù)和倍數(shù)教學(xué)反思20篇01-07
因數(shù)和倍數(shù)教學(xué)反思(15篇)11-25
《因數(shù)和倍數(shù)》教學(xué)反思15篇02-06
因數(shù)和倍數(shù)教學(xué)反思精選(15篇)07-04
《因數(shù)與倍數(shù)》教學(xué)反思11-26