《因數(shù)與倍數(shù)》教學(xué)反思
作為一位剛到崗的人民教師,教學(xué)是我們的工作之一,對學(xué)到的教學(xué)技巧,我們可以記錄在教學(xué)反思中,來參考自己需要的教學(xué)反思吧!下面是小編整理的《因數(shù)與倍數(shù)》教學(xué)反思,供大家參考借鑒,希望可以幫助到有需要的朋友。
《因數(shù)與倍數(shù)》教學(xué)反思1
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。
(1)新課標(biāo)教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的學(xué)習(xí),而是反其道而行之,通過乘法算式來導(dǎo)入新知。
(2)“約數(shù)”一詞被“因數(shù)”所取代。這樣的變化原因何在,我認(rèn)真研讀教材,通過學(xué)習(xí)了解到以下信息:簽于學(xué)生在前面已經(jīng)具備了大量的區(qū)分整除與有余數(shù)除法的知識基礎(chǔ),對整除的含義已經(jīng)有了比較清楚的認(rèn)識,不出現(xiàn)整除的定義并不會對學(xué)生理解其他概念產(chǎn)生任何影響。
(3)因此,本套教材中刪去了“整除”的數(shù)學(xué)化定義,而是借助整除的模式直接引出因數(shù)和倍數(shù)的'概念。雖然學(xué)生已接觸過整除與有余數(shù)的除法,但我班學(xué)生對“整除”與“除盡”的內(nèi)涵與外延并不清晰。因此在教學(xué)時(shí),補(bǔ)充了兩道判斷題請學(xué)生辨析:11÷2=5……1。問:11是2的倍數(shù)嗎,為什么,因?yàn)?×0.8=4,所以5和0.8是4的因數(shù),4是5和0.8的倍數(shù),對嗎,為什么,特別是第2小題極具價(jià)值。價(jià)值不僅體現(xiàn)在它幫助學(xué)生通過辨析明確了在研究因數(shù)和倍數(shù)時(shí),我們所說的數(shù)都是指整數(shù)(一般不包括0),及時(shí)彌補(bǔ)了未進(jìn)行整除概念教學(xué)的知識缺陷,還通過此題對“因數(shù)”與乘法算式名稱中的“因數(shù)”,倍數(shù)與倍進(jìn)行了對比。
《因數(shù)與倍數(shù)》教學(xué)反思2
北師大版五年級數(shù)學(xué)上、第三單元第一節(jié)《倍數(shù)與因數(shù)》是一節(jié)概念課。關(guān)于“倍數(shù)和因數(shù)”教材中沒有寫出具體的數(shù)學(xué)好處,只是借助乘法算式加以說明,進(jìn)而讓學(xué)生探究尋找一個(gè)數(shù)的倍數(shù)和因數(shù)。通過備課,我梳理出這樣一個(gè)教學(xué)脈絡(luò):乘法算式——倍數(shù)和因數(shù)——乘法算式——找一個(gè)數(shù)的倍數(shù)。從教材本身來看,這部分知識對于五年級學(xué)生而言,沒有什么生活經(jīng)驗(yàn),也談不上有什么新興趣,是一節(jié)數(shù)學(xué)味很濃的概念課。如何借助教材這一載體,讓學(xué)生在互動、探究中掌握相應(yīng)的知識,讓乏味變成有味呢?我從以下兩個(gè)方面談一點(diǎn)教學(xué)體會。
一、設(shè)疑遷移,點(diǎn)燃學(xué)習(xí)的火花。
良好的開頭是成功的一半。我采用一道腦筋急轉(zhuǎn)彎題作為談話引入課題,不僅僅能夠調(diào)動學(xué)生的學(xué)習(xí)興趣,看似不相關(guān)的兩件事例中隱藏著共同點(diǎn):一一對應(yīng)、相互依存。對感知倍數(shù)和因數(shù)進(jìn)行有效的滲透和拓展。
教學(xué)找一個(gè)數(shù)的倍數(shù)時(shí),我依據(jù)學(xué)情,設(shè)計(jì)讓學(xué)生獨(dú)立探究尋找2的倍數(shù)、5的倍數(shù),學(xué)生發(fā)現(xiàn)2的倍數(shù)、5的倍數(shù)寫不完時(shí),通過討論,認(rèn)為用省略號表示比較恰當(dāng),用語文中的一個(gè)標(biāo)點(diǎn)符號解決了數(shù)學(xué)問題,自我發(fā)現(xiàn)問題自我解決,學(xué)生從中體驗(yàn)到解決問題的愉快感和掌握新知的成就感。
二、滲透學(xué)法,構(gòu)成學(xué)習(xí)的`技能。
由于一個(gè)數(shù)倍數(shù)的個(gè)數(shù)是無限的,那么如何讓學(xué)生體會“無限”、又如何有序?qū)懗鰜砟兀课易寣W(xué)生嘗試說出3的倍數(shù)。學(xué)生找倍數(shù)的方法有:依次加3、依次乘1、2、3……、用乘法口訣等等。我組織學(xué)生展開評價(jià),有的學(xué)生認(rèn)為:從小到大依次寫,因?yàn)橛行,所以覺得好;有的學(xué)生認(rèn)為:用乘法算式寫倍數(shù),既快而且不受前面倍數(shù)的影響,能夠很快地找到第幾個(gè)倍數(shù)是多少,因?yàn)楹喗菡_率高所以覺得好。如此的交流雖然花費(fèi)了“寶貴”的學(xué)習(xí)時(shí)光,但是學(xué)生從中能體會到學(xué)習(xí)的方法,發(fā)展了思維,這才是最寶貴的。正所謂沒有一路上的山花爛漫,哪有山頂上的風(fēng)光無限。
三、學(xué)練結(jié)合,及時(shí)把握學(xué)生學(xué)情。
在學(xué)生通過具體例子初步認(rèn)識了倍數(shù)和因數(shù)以后,通過超多的練習(xí)讓學(xué)生在練習(xí)中感悟,練習(xí)中加深理解概念;在探究出找倍數(shù)的方法以后,及時(shí)讓學(xué)生寫出2的倍數(shù)、5的倍數(shù),從而引導(dǎo)學(xué)生發(fā)現(xiàn)一個(gè)數(shù)的倍數(shù)的特點(diǎn),并適時(shí)進(jìn)行針對性練習(xí),鞏固新知。
課尾,我設(shè)計(jì)了四道達(dá)標(biāo)檢測練習(xí),將整堂課的資料進(jìn)行整理和概括,對易混淆的概念加以比較,對本節(jié)課重要知識點(diǎn)進(jìn)行檢測,及時(shí)掌握了學(xué)生的學(xué)情。
縱觀整節(jié)課,學(xué)生在學(xué)習(xí)過程中自始至終處于主體地位,嘗試練習(xí)、自主探索、解決問題,教師只是加以引導(dǎo),以合作者的身份參與其中。學(xué)生在思維上得到了訓(xùn)練,探究問題、尋求解決問題策略的潛力也會逐步得到提高。
《因數(shù)與倍數(shù)》教學(xué)反思3
XXXX小學(xué) XXXXX
教學(xué)內(nèi)容:教材例1、例2
教學(xué)目標(biāo)
1.知識與技能:讓學(xué)生初步理解因數(shù)和倍數(shù)的概念,掌握找因數(shù)和倍數(shù)的方法。學(xué)會用列舉法找一個(gè)數(shù)的因數(shù)和倍數(shù)。
2.過程與方法:借助直觀圖,先引導(dǎo)學(xué)生觀察后列出乘法算式,最后結(jié)合乘法算式來理解因數(shù)與倍數(shù)的概念。
3.情感、態(tài)度與價(jià)值觀:理解因數(shù)和倍數(shù)的意義能及兩者之間相互依存的關(guān)系。
教學(xué)重點(diǎn):理解因數(shù)和倍數(shù)的概念。
教學(xué)難點(diǎn):掌握求一個(gè)數(shù)的因數(shù)和倍數(shù)的方法。
教學(xué)方法:啟發(fā)式教學(xué)法、指導(dǎo)自主學(xué)習(xí)法。
教學(xué)準(zhǔn)備:多媒體。
教學(xué)過程:
一、新課導(dǎo)入:
1.出示教材第5頁例1。
12÷2=6 9÷5=1.830÷6=5 2÷3=0.6
26÷8=3.5 19÷7≈2.7120÷10=2 21÷21=163÷9=7
(1)觀察: 引導(dǎo)觀察例1中的算式,你發(fā)現(xiàn)了什么?(都是除法算式)
(2)分類:你能把上面的除法算式分類嗎?
學(xué)生分類后,教師組織學(xué)生交流,引導(dǎo)學(xué)生根據(jù)是否整除分為以下兩類
第一類 12÷2=620÷10=2 30÷6=5 21÷21=1 63÷9=7 第二類 9÷5=1.8 19÷7≈2.71 2÷3=0.626÷8=3.25
2.引入課題。這節(jié)課我們就來學(xué)習(xí)有關(guān)數(shù)的整除的相關(guān)知識。(板書課題:因數(shù)和倍數(shù))
二、探索新知:
。ㄒ唬⒚鞔_因數(shù)與倍數(shù)的意義。(教學(xué)例1)
1. 教師引導(dǎo)。教師指出:在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們
就說被除數(shù)是除數(shù)和商的倍數(shù),除數(shù)和商是被除數(shù)的因數(shù)。例如:12÷2=6,我們說12是2和6的倍數(shù),2和6是12的因數(shù)。
2. 學(xué)生嘗試。
教師讓學(xué)生說一說第一類的每個(gè)算式中,誰是誰的因數(shù)?誰是誰的倍數(shù)?先同桌互相說一說,再組織全班交流。
3. 深化認(rèn)識。師:通過剛才的說一說活動,你發(fā)現(xiàn)了什么?
引導(dǎo)學(xué)生體會:因數(shù)和倍數(shù)雖是兩個(gè)不同的概念,但又是相互依存的,二者不能單獨(dú)存在。我們不能說誰是因數(shù),誰是倍數(shù),而應(yīng)該說誰是誰的因數(shù),誰是誰的倍數(shù)。例如,30÷6=5,30是6和5的倍數(shù),6和5是30的因數(shù)。教師強(qiáng)調(diào),并讓學(xué)生注意:為了方便,在研究因數(shù)和倍數(shù)的時(shí)候,我們所說的數(shù)指的是自然數(shù)(一般不包括O)。
4. 即時(shí)練習(xí)。指導(dǎo)學(xué)生完成教材第5頁“做一做”。
小結(jié):如果a÷b =c(a,b,c均是不為0的自然數(shù)),那么a就是b和c的倍數(shù),b和c是a的因數(shù)。因數(shù)和倍數(shù)是相互依存的`。
(二)、探索找一個(gè)數(shù)因數(shù)的方法。(教學(xué)例2)
1. 出示例2:18的因數(shù)有哪幾個(gè)?
(1) 學(xué)生獨(dú)立思考。
師:根據(jù)因數(shù)和倍數(shù)的意義,想一想18除以哪些整數(shù)的結(jié)果是整數(shù)。
18÷1=18,l和18是18的因數(shù);18÷2=9, 2和9是18的因數(shù);18÷3=6, 3和6是18的因數(shù)。引導(dǎo)學(xué)生把18的因數(shù)按從小到大的順序排列,每兩個(gè)因數(shù)之間用逗號隔開,全部寫完后用句號結(jié)束,即18的因數(shù)有:1,2,3,6,9 ,18。
(2)小組合作交流。交流時(shí)教師要讓學(xué)生說明找的方法,引導(dǎo)學(xué)生認(rèn)識:只要想18除以哪些整數(shù)的結(jié)果是整數(shù),并且要從1開始,一對一對地找,避免遺漏。如果學(xué)生還有其他想法,只要合理,教師都應(yīng)給予肯定。
(3)采用集合圖的方法。
教師指出也可用右面的集合圖來表示18的全部因數(shù)。明確:用圖示法表示18的因數(shù)時(shí),先畫一個(gè)橢圓,在橢圓的上面寫上“18的因數(shù)”,再把18的因數(shù)按從小到大的順序有規(guī)律地寫在橢圓里,每兩個(gè)因數(shù)之間也用逗號隔開,全部寫完后不加句號。
(4)練習(xí)。讓學(xué)生找出30的因數(shù)和36的因數(shù),并組織交流。
30的因數(shù)有1,2,3,5,6,10,15,30。
36的因數(shù)有1,2,3,4,6,9,12,18,36。
三、鞏固練習(xí)
指導(dǎo)學(xué)生完成教材“練習(xí)二”第1、6題。學(xué)生獨(dú)立完成全部練習(xí)后教師組織學(xué)生進(jìn)行集體證正。
四、課堂小結(jié)
師:通過本節(jié)課的學(xué)習(xí),你有什么收獲?
板書設(shè)計(jì):
因數(shù)和倍數(shù)
12÷2=6 12是2和6的倍數(shù)
2和6是12的因數(shù) 18的因數(shù)有1,2,3,6,9,18。
一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的,一個(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無限的。
作業(yè):教材第7頁“練習(xí)二”第2(1)題。
第二單元:因數(shù)和倍數(shù)
第二課時(shí):因數(shù)與倍數(shù)(2)
教學(xué)內(nèi)容:教材P6例3及練習(xí)二第2(1)、3~8題。
教學(xué)目標(biāo):
知識與技能:通過學(xué)習(xí),使學(xué)生能自主探究,找出求一個(gè)數(shù)的倍數(shù)的方法。 過程與方法:結(jié)合具體情境,使學(xué)生進(jìn)一步認(rèn)識自然數(shù)之間存在因數(shù)和倍數(shù)的關(guān)系,掌握求一個(gè)數(shù)的因數(shù)和倍數(shù)的方法。
情感、態(tài)度與價(jià)值觀:初步學(xué)會從數(shù)學(xué)的角度提出問題、理解問題,并能用所學(xué)知識解決問題。在解決問題的過程中,培養(yǎng)學(xué)生概括、分析和比較的能力,使學(xué)生體會數(shù)學(xué)知識的內(nèi)在聯(lián)系。
教學(xué)重點(diǎn):掌握求一個(gè)數(shù)的倍數(shù)的方法。
教學(xué)難點(diǎn):理解因數(shù)和倍數(shù)兩者之間的關(guān)系。
教學(xué)方法:啟發(fā)式教學(xué)法、指導(dǎo)自主學(xué)習(xí)法。
教學(xué)準(zhǔn)備:多媒體。
教學(xué)過程:
一、復(fù)習(xí)導(dǎo)入
10,28,42的因數(shù)有哪些?你是用什么方法找出這些數(shù)的因數(shù)個(gè)數(shù)的?一個(gè)數(shù)的因數(shù)中,最大的是幾?最小的是幾?
二、探索新知
1.探索找倍數(shù)的方法。(教學(xué)例3)
出示例3:2的倍數(shù)有哪些?
師:你會找2的倍數(shù)嗎?給你們1分鐘的時(shí)間,看誰寫得又對、又快、又多!準(zhǔn)備好了嗎?開始!
師:時(shí)間到,你寫了多少個(gè)2的倍數(shù)?生1:15個(gè)。生2:24個(gè)。
師:大家都是用的什么方法呢?
生1:我是用乘法口訣,一二得二,二二得四……這樣寫下去的。
生2:我也是用乘法,用2去乘1、乘2……
師:哪些同學(xué)也是用乘法做的?
師:你們都是用2去乘一個(gè)數(shù),所得的積就是2的倍數(shù)。還有不同的方法嗎?
生3:我用的是除法,用2÷2=1,4÷2=2 6÷2=3??依次除下去。
師:很好!如果給你更長的時(shí)間,你能把2的倍數(shù)全部寫出來嗎?
師:為什么?(因?yàn)?的倍數(shù)有無數(shù)個(gè))
師:怎么辦?(用省略號)
師:通過交流,你有什么發(fā)現(xiàn)?
引導(dǎo)學(xué)生初步體會2的倍數(shù)的個(gè)數(shù)是無限的。
追問:你能用集合圖表示2的倍數(shù)嗎?
學(xué)生填完后,教師組織學(xué)生進(jìn)行核對。
(4)即時(shí)練習(xí)。讓學(xué)生找出3的倍數(shù)和5的倍數(shù),并組織交流。學(xué)生舉例時(shí)可能會產(chǎn)生錯(cuò)誤,教師要引導(dǎo)學(xué)生根據(jù)錯(cuò)例進(jìn)行適時(shí)剖析。
4.反思提煉。師:從前面找因數(shù)和倍數(shù)的過程中,你有什么發(fā)現(xiàn)?
先讓學(xué)生在小組內(nèi)交流,再組織全班集體交流,通過全班交流,引導(dǎo)學(xué)生認(rèn)識以下三點(diǎn):
(1)一個(gè)數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。
(2)一個(gè)數(shù)的最小倍數(shù)是它本身,沒有最大倍數(shù)。
(3)一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的,一個(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無限的。
三、鞏固提升
1.指導(dǎo)學(xué)生完成教材第7~8頁“練習(xí)二”第4、5、6、7題。
學(xué)生獨(dú)立完成全部練習(xí)后教師組織學(xué)生進(jìn)行集體證正。
集體訂正時(shí),教師著重引導(dǎo)學(xué)生認(rèn)識以下幾點(diǎn):
(1)第4題“15的因數(shù)有哪些?”和“15是哪些數(shù)的倍數(shù)”答案是一樣的。
(2)第5題中的第(2)小題是錯(cuò)的,因?yàn)橐粋(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無限的,第(4)小題也是錯(cuò)的,因?yàn)樵谘芯恳驍?shù)和倍數(shù)時(shí),我們所說的數(shù)指的是自然數(shù),不含小數(shù)。
(3)思考題:兩數(shù)如果都是7(或9)倍數(shù),它們的和也一定是7(或9)的倍數(shù),即如果兩數(shù)都是n的倍數(shù),它的和也是n的倍數(shù)。
2.利用求倍數(shù)的方法解決生活中的實(shí)際問題
出示:媽媽買來幾個(gè)西瓜,2個(gè)2個(gè)地?cái)?shù),正好數(shù)完,5個(gè)5個(gè)地?cái)?shù),也正好數(shù)完。這些西瓜最少有多少個(gè)?
理解題意,分析解答。
教師提示“2個(gè)2個(gè)地?cái)?shù),正好數(shù)完,說明西瓜的個(gè)數(shù)是2的倍數(shù),5個(gè)5
《因數(shù)與倍數(shù)》教學(xué)反思4
本節(jié)課的重點(diǎn)是讓學(xué)生掌握因數(shù)、倍數(shù)的概念,以及它們之間的聯(lián)系和區(qū)別,內(nèi)容較為抽象,為讓學(xué)生理清各概念間的前后承接關(guān)系,達(dá)到融會貫通的程度,在學(xué)習(xí)《因數(shù)和倍數(shù)》這節(jié)課時(shí),我注意做到以下幾點(diǎn):
一、加強(qiáng)對概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念。
因數(shù)和倍數(shù)是最基本的兩個(gè)概念,理解了因數(shù)和倍數(shù)的含義對于一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的、倍數(shù)的個(gè)數(shù)是無限的等結(jié)論自然也就掌握了。因此,教學(xué)時(shí),我引導(dǎo)學(xué)生觀察生活中的情景圖引出乘法算式2×6=12,讓學(xué)生在多說中體會、理解乘法算式中兩數(shù)之間的因數(shù)與倍數(shù)的關(guān)系。學(xué)生在交流中輕松地理解了兩數(shù)之間因數(shù)與倍數(shù)之間的關(guān)系,同時(shí)引出12的所有因數(shù),讓孩子感受到用乘法算式找一個(gè)數(shù)的因數(shù)的方法,為后面學(xué)習(xí)找一個(gè)數(shù)的`因數(shù)做好鋪墊。
二,引導(dǎo)孩子在自主探究中學(xué)習(xí)新知
在學(xué)習(xí)找一個(gè)數(shù)的因數(shù)時(shí),讓孩子們動腦思考,小組合作中探究方法,孩子們想出的方法很多,充分發(fā)揮了他們智慧,然后在老師的引導(dǎo)中優(yōu)化了方法,孩子們在體驗(yàn)中逐步掌握了方法,學(xué)得深刻,方法熟練。
三、注意培養(yǎng)學(xué)生的抽象思維能力
教學(xué)中,注重學(xué)生的動腦思考、觀察,讓學(xué)生在自主的探究學(xué)習(xí)中表達(dá)自己的想法,通過一些特殊的例子,引導(dǎo)學(xué)生用數(shù)學(xué)的語言總結(jié)概括一些概念,逐步形成從特殊到一般的歸納推理能力。
《因數(shù)與倍數(shù)》教學(xué)反思5
這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點(diǎn):
一、操作實(shí)踐,舉例內(nèi)化,認(rèn)識倍數(shù)和因數(shù)
我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學(xué)生動手操作把12個(gè)小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識基礎(chǔ)上,從動手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義.使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,充分學(xué)習(xí)、利用、挖掘教材,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩難度,效果較好。
二、自主探究,意義建構(gòu),找倍數(shù)和因數(shù)
整個(gè)教學(xué)過程中力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動的組織者、指導(dǎo)者、參與者。整節(jié)課中,教師始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索,學(xué)習(xí)理解倍數(shù)和因數(shù)的意義,探索并掌握找一個(gè)數(shù)的倍數(shù)和因數(shù)的方法,引導(dǎo)學(xué)生在充分的動口、動手、動腦中自主獲取知識。
新課程提出了合作學(xué)習(xí)的學(xué)習(xí)方式,教學(xué)中的多次合作不僅能讓學(xué)生在合作中發(fā)表意見,參與討論,獲得知識,發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學(xué)生的`合作學(xué)習(xí)能力,初步形成合作與競爭的意識。
找一個(gè)數(shù)因數(shù)的方法是本節(jié)課的難點(diǎn),在教學(xué)過程中讓學(xué)生自主探索,在隨后的巡視中發(fā)現(xiàn)有很多的學(xué)生完成的不是很好,我就決定先交流在讓學(xué)生尋找,這樣就用了很多時(shí)間,最后就沒有很多的時(shí)間去練習(xí),我認(rèn)為雖然時(shí)間用的過多,但我認(rèn)為學(xué)生探索的比較充分,學(xué)生也有收獲。如何做到既不重復(fù)又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個(gè)感性認(rèn)識的學(xué)生來說有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。先讓學(xué)生自己獨(dú)立找36的因數(shù),我巡視了一下三分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按一定的次序進(jìn)行。接著讓學(xué)生在小組里討論兩個(gè)問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對自己剛才的方法進(jìn)行反思,吸收同伴中好的方法,這時(shí)老師再給予有效的指導(dǎo)和總結(jié)。
三、變式拓展,實(shí)踐應(yīng)用---—促進(jìn)智能內(nèi)化
練習(xí)的設(shè)計(jì)不僅緊緊圍繞教學(xué)重點(diǎn),而且注意到了練習(xí)的層次性,趣味性。在游戲中,師生互動,激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來,學(xué)生不僅參與率高,而且還較好地鞏固了新知。課上,我能注重自始至終關(guān)注學(xué)生學(xué)習(xí)興趣、學(xué)習(xí)熱情、學(xué)習(xí)自信等情感因素的培養(yǎng),并及時(shí)讓學(xué)生感受到學(xué)習(xí)成功的喜悅,享受數(shù)學(xué),感悟文化魅力。
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,是比較抽象的,本冊教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。本節(jié)課是這一單元的的教學(xué)重點(diǎn)。為讓學(xué)生很好的感受因數(shù)與倍數(shù)的意義,能夠熟練的找出一個(gè)數(shù)的因數(shù)與倍數(shù),靈活地處理了教材,分為兩課時(shí)進(jìn)行。第一課時(shí)只讓學(xué)生認(rèn)識了因數(shù)和倍數(shù)的意義及找一個(gè)數(shù)的因數(shù)的方法。
一、設(shè)計(jì)情境,引起思考。
創(chuàng)造性的使用教材,引起學(xué)生思考,板書15÷0.3=50,1.5÷3=0.5,1.5÷0.3=5,15÷3=5引出除盡和整除的含義,從而明確了因數(shù)倍數(shù)的研究范圍,進(jìn)而理解決因數(shù)與倍數(shù)的意義。對于因數(shù)與倍數(shù)的依存關(guān)系,學(xué)生在理解時(shí)比較抽象,我就放到具體算式里,算式由學(xué)生舉例,反復(fù)去說誰是誰的倍數(shù),誰是誰的因數(shù),在課堂中反復(fù)強(qiáng)調(diào),幫助學(xué)生認(rèn)真理解辨析,從而理解了因數(shù)與倍數(shù)之間的相互依存關(guān)系。學(xué)生一節(jié)課下來對這組概念就理解透徹了,就不會模糊了。
二、引導(dǎo)學(xué)生探求找因數(shù)的方法。
如何找一個(gè)數(shù)的因數(shù)是這節(jié)課的又一個(gè)重點(diǎn),首先讓學(xué)生找出24的因數(shù),由于個(gè)人經(jīng)驗(yàn)和思維的差異,出現(xiàn)了不同的方法與答案,在探索這些方法和答案的過程中,學(xué)生明白了如何求出一個(gè)數(shù)的因數(shù)的方法,從而掌握了知識點(diǎn)。
根據(jù)學(xué)生的學(xué)習(xí)特點(diǎn),靈活的應(yīng)用教材,使之服務(wù)于教學(xué),讓教學(xué)有效的進(jìn)行,才能達(dá)到教學(xué)的目的。在探索找一個(gè)數(shù)的因數(shù)的方法時(shí),為了讓學(xué)生更加形象地體會出“要按照一定的順序去找”才不會遺漏和重復(fù),充分運(yùn)用多媒體,通過演示18、24、77、1的因數(shù),讓學(xué)生直觀地看到了“順序”,學(xué)會有序思考,體會到了求一個(gè)數(shù)的因數(shù)的方法。與此同時(shí)學(xué)生直觀觀察發(fā)現(xiàn)一個(gè)數(shù)的因數(shù)都有1和它本身,最小的因數(shù)是1,最大的因數(shù)是它本身,不是數(shù)字越大因數(shù)個(gè)數(shù)就越多,一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的等等重要相關(guān)知識,這些發(fā)現(xiàn)與課堂練習(xí)息息相關(guān),形成本節(jié)課完整的知識體系,還為后面的學(xué)習(xí)做好鋪墊。課堂練習(xí)完成的很好,起到學(xué)以致用的學(xué)習(xí)效果。培養(yǎng)學(xué)生的概括能力、歸納能力,抽象能力得以進(jìn)一步發(fā)展。
《因數(shù)與倍數(shù)》教學(xué)反思6
公因數(shù)和公倍數(shù)的學(xué)習(xí)是五下教材的兩個(gè)重要概念,新教材對這部分內(nèi)容作了化解難點(diǎn),個(gè)別擊破的辦法,如何教學(xué)好這節(jié)內(nèi)容,我在這次的新教材教學(xué)實(shí)踐中作了如下嘗試。
1、 有效建立概念之間的結(jié)構(gòu)鏈,形成條理化。 因數(shù)——公因數(shù)——最大公因數(shù)
倍數(shù)——公倍數(shù)——最大公倍數(shù)
這一單元主要是讓學(xué)生在操作與交流活動中認(rèn)識公倍數(shù)與最小公倍數(shù),公因數(shù)與最大公因數(shù),并激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的探究能力,因此在教學(xué)中我認(rèn)為應(yīng)特別注重概念間的系列反應(yīng),如倍數(shù)和因數(shù)是前面所學(xué)內(nèi)容,新內(nèi)容要在此基礎(chǔ)上生根,必須復(fù)習(xí)舊知,聯(lián)系生活,學(xué)習(xí)新知,圍繞“公”,理解公倍數(shù)與公因數(shù)的概念,最小公倍數(shù)則通過實(shí)際生活中如第25頁公交發(fā)車問題或參加游泳問題,來引發(fā)就是求最小公倍數(shù)來解決問題,最大公因數(shù)則通過長18厘米,寬12厘米的長方形來分最大的小正方形得到,教學(xué)中,我們必須注重學(xué)生對概念間的關(guān)系理解,從而形成條理化。
2、 有效設(shè)計(jì)復(fù)習(xí)引入的問題串,引發(fā)思維性。
由6和8的因數(shù)有哪些?引起學(xué)生回憶怎么求一個(gè)數(shù)的因數(shù)?(一對一對地想、由小到大地有序地想)然后發(fā)現(xiàn)它們有1和2是相同的,即為公因數(shù),用集合圖(韋恩圖)可以形象地描畫出來,那么公因數(shù)有什么作用呢?
引出改編后的例3,要把長18厘米、寬12厘米的長方形剪成若干個(gè)相等的小正方形且沒有剩余,有多少種剪法?最大的正方形是哪一種?
學(xué)生探究后發(fā)現(xiàn),正方形的`邊長為1厘米、2厘米、3厘米、6厘米,反思:為什么?邊長與12厘米和18厘米有什么關(guān)系?
從而想到18的因數(shù)有哪些,12的因數(shù)有哪些,18和12的公因數(shù)即為剪下的正方形的邊長,而6則是比較特別的一個(gè)最大的數(shù),即為最大公因數(shù),到這里實(shí)際解決了例4。
再次提問:因數(shù)是怎么求的?公因數(shù)是什么意思?最大公因數(shù)是什么意思?怎么求兩個(gè)數(shù)的最大公因數(shù);氐浇滩,自學(xué)教材,思考問題。 3、 有效使用教材與教輔資料,提高達(dá)成性。
什么時(shí)候閱讀教材,例題等主體部分看不看?練習(xí)部分怎么用?都值得我們每節(jié)課去揣摩和研究。
在公因數(shù)的教學(xué)中,我既不完全脫離教材,又適當(dāng)對教材進(jìn)行了重組,改變了教材在課堂上的展示方式,整合了兩道例題與習(xí)題10的展示與使用,讓學(xué)生在“潤物無聲”的境界中,既學(xué)習(xí)了例題,又學(xué)習(xí)了新知,還不完全相同。為不讓
學(xué)生陌生,共同探討之后又讓學(xué)生回到教材,仔細(xì)閱讀教材,尋找教材重點(diǎn)、難點(diǎn),作好標(biāo)記,可以當(dāng)堂又經(jīng)過了初步的復(fù)習(xí)。
書后的練一練以及練習(xí)五1-5題,由淺入深,重點(diǎn)訓(xùn)練學(xué)生尋找最大公因數(shù)的方法,無需改編,原題照用,可以直接在教材上作練習(xí),當(dāng)堂鞏固所學(xué)新知,結(jié)合練習(xí)適當(dāng)進(jìn)行拓寬與技能的強(qiáng)化,可以直接實(shí)現(xiàn)當(dāng)堂清。
《因數(shù)與倍數(shù)》教學(xué)反思7
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。本節(jié)課又是這一單元的的教學(xué)重點(diǎn)。為讓學(xué)生很好的感受因數(shù)與倍數(shù)的意義,能夠熟練的找出一個(gè)數(shù)的因數(shù)與倍數(shù),靈活地處理了教材,分為兩課時(shí)進(jìn)行。第一課時(shí)只讓學(xué)生認(rèn)識了因數(shù)和倍數(shù)的意義及找一個(gè)數(shù)的因數(shù)的方法,效果不錯(cuò)。
一、設(shè)計(jì)情境,引起思考。
改變教材的情境圖,用學(xué)生有興趣的情意引入課題:有12個(gè)小方塊,要求擺成一個(gè)長方體,你想怎么擺。引起學(xué)生思考,學(xué)生想到有3種擺法,每種擺法怎么列式求出一共有多少方塊?由于方法的多樣性,為不同思維的展現(xiàn)提供了空間。從而理解決因數(shù)與倍數(shù)的意義。
二、引導(dǎo)學(xué)生探求找因數(shù)的方法,使探索有方向。
如何找一個(gè)數(shù)的因數(shù)是這節(jié)課的重點(diǎn),首先放手讓學(xué)生找出24的因數(shù),由于個(gè)人經(jīng)驗(yàn)和思維的差異,出現(xiàn)了不同的方法與答案,在探索這些方法和答案的'過程中,學(xué)生明白了如何求出一個(gè)數(shù)的因數(shù)的方法,從而掌握了知識點(diǎn)。
根據(jù)學(xué)生的學(xué)習(xí)特點(diǎn),靈活的應(yīng)用教材,使之服務(wù)于教學(xué),讓教學(xué)有效的進(jìn)行,才能達(dá)到教學(xué)的目的。
《因數(shù)與倍數(shù)》教學(xué)反思8
不知不覺,我們又進(jìn)行了第二單元的學(xué)習(xí)。第二單元的內(nèi)容是《因數(shù)與倍數(shù)》,這部分內(nèi)容與老教材相比變化很大,我覺得第二、四單元是本冊教材中變化最大的單元,要引起足夠的重視。
1、以往認(rèn)識因數(shù)和倍數(shù)是借助于整除現(xiàn)象,“X能被X整除,或X能整除X”,所以X是X的因數(shù),X是X的倍數(shù),F(xiàn)在的教材完全不同了,2X3=6,所以2和3是6的因數(shù),6是2和3的倍數(shù),借助整除的`模式na=b直接引出因數(shù)和倍數(shù)的概念。
2、以往數(shù)學(xué)教材中,概念教學(xué)的量很大。數(shù)的整除,因數(shù)(老教材稱為約數(shù)),倍數(shù),2、5、3的倍數(shù)的特征(老教材稱為能被2、5、3整除的數(shù)的特征),質(zhì)數(shù),倒數(shù),分解質(zhì)因數(shù),最大公因數(shù)(以往的教材中稱為最大公約數(shù)),最小公倍數(shù)等內(nèi)容共同編排在后面,合為一個(gè)單元。而現(xiàn)在新教材本單元只安排了因數(shù)和倍數(shù),2、5、3的倍數(shù)的特征,質(zhì)數(shù)合數(shù)。其它內(nèi)容安排在了第四單元《分?jǐn)?shù)的意義和性質(zhì)》,借助約分引出公約數(shù)、公倍數(shù)的學(xué)習(xí),改變了概念多而集中,抽象程度過高的現(xiàn)象。
3、以往求最大公約數(shù),最小公倍數(shù)時(shí),采用的方法是唯一的、固定的,也就是有短除法分解質(zhì)因數(shù),而新教材中鼓勵(lì)方法多樣化,不把它作為正式的內(nèi)容教學(xué),而是出現(xiàn)在教材的你知道嗎中?不那么呆板了,尊重學(xué)生的思維差異。
可見,編者為體現(xiàn)新課標(biāo)精神對本部分內(nèi)容作了精心的調(diào)整,煞費(fèi)苦心,可是學(xué)完了本單元的第一部分和第二部分內(nèi)容,我對本單元的學(xué)習(xí)內(nèi)容有了小小的疑問。這一單元內(nèi)容分為因數(shù)和倍數(shù),2、5、3的倍數(shù)的特征,質(zhì)數(shù)和合數(shù),我覺得第一部分內(nèi)容和第三部分內(nèi)容的關(guān)系很大,連續(xù)性強(qiáng)。知道了什么是因數(shù)和倍數(shù),也會找一個(gè)數(shù)的因數(shù)和倍數(shù)了,那么就應(yīng)該從找因數(shù)和個(gè)數(shù)問題上學(xué)習(xí)質(zhì)數(shù)和合數(shù)。教材對質(zhì)數(shù)和合數(shù)的學(xué)習(xí)內(nèi)容設(shè)計(jì)較好,開門見山讓學(xué)生找出1-20各數(shù)的因數(shù),觀察因數(shù)的個(gè)數(shù)有什么規(guī)律,再引出質(zhì)數(shù)和合數(shù)的學(xué)習(xí)。可為什么在中間突然加上了2、5、3的倍數(shù)的特征?這樣感覺前后內(nèi)容失去了聯(lián)系,不夠自然流暢。所以我覺得可以把二三部分內(nèi)容作為適當(dāng)?shù)恼{(diào)整,即因數(shù)和倍數(shù),質(zhì)數(shù)和合數(shù),2、5、3的倍數(shù)的特征會比較好一些。
《因數(shù)與倍數(shù)》教學(xué)反思9
本節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一定的整數(shù)知識的基礎(chǔ)上進(jìn)行教學(xué)的。
課堂中,我首先讓學(xué)生理解分類標(biāo)準(zhǔn),明確因數(shù)和倍數(shù)的含義。在例1教學(xué)中,首先根據(jù)不同的除法算式讓學(xué)生進(jìn)行分類,同時(shí)思考其標(biāo)準(zhǔn)依據(jù)是什么。通過學(xué)生的獨(dú)立思考和小組交流學(xué)生得出:
第一種是分為兩類:
一類是商是整數(shù),另一類是商是小數(shù);
第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學(xué)生在爭論與交流中達(dá)成一致答案分為兩類。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的含義,特別強(qiáng)調(diào)的是對于因數(shù)和倍數(shù)的`含義要符合兩個(gè)條件:
一是必須在整數(shù)除法中,
二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個(gè)條件才能說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。
其次,厘清概念倍數(shù)和幾倍,注重強(qiáng)調(diào)倍數(shù)和因數(shù)的相互依存性。在教學(xué)中可以直接告訴學(xué)生因數(shù)和倍數(shù)都不能單獨(dú)存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)。
對于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進(jìn)行研究,而幾倍既可以在整數(shù)范圍內(nèi),也可以在小數(shù)范圍內(nèi)進(jìn)行研究,它的研究范圍較之倍數(shù)范圍大一些。
本節(jié)課的不足之處:
1、練習(xí)設(shè)計(jì)容量少了一些,導(dǎo)致課堂有剩余時(shí)間。
2、對因數(shù)和倍數(shù)的含義還應(yīng)該進(jìn)行歸納總結(jié)上升到用字母來表示。
《因數(shù)與倍數(shù)》教學(xué)反思10
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個(gè)除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個(gè)簡單的實(shí)物圖(2行飛機(jī),每行6架)引出一個(gè)乘法算式2×6=12,通過這個(gè)乘法算式直接給出因數(shù)和倍數(shù)的概念.
“數(shù)學(xué)是科學(xué)中的皇后,而數(shù)論又是數(shù)學(xué)中的皇冠”,因數(shù)和倍數(shù)這部分知識屬于數(shù)論中的分支,比較抽象。我覺得這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。尤其對因數(shù)和倍數(shù)是一對相互依存的概念,不能單獨(dú)存在,不是很好理解。因此在教學(xué)中我重視學(xué)生主體作用的發(fā)揮,注重為學(xué)生創(chuàng)造自主探究的時(shí)間與空間。采用質(zhì)疑——探究——釋疑——鞏固——總結(jié)的課堂教學(xué)模式收到了較好的教學(xué)效果。對于這節(jié)課的教學(xué),我特別注意從以下幾個(gè)方面來幫助學(xué)生理解因數(shù)和倍數(shù)的概念。
一、對比中質(zhì)疑,激發(fā)學(xué)習(xí)興趣
學(xué)源于思,起于疑。課的開始我從“因數(shù)”這一概念入手,問學(xué)生我們在什么時(shí)候認(rèn)識過“因數(shù)”,學(xué)生回憶起在乘法的各部分名稱中認(rèn)識了“因數(shù)”!凹热晃覀円呀(jīng)認(rèn)識了因數(shù),教材為什么又讓我們認(rèn)識它呢,我們這節(jié)課認(rèn)識的因數(shù)和我們前面認(rèn)識的因數(shù)有什么不同呢?”我的問題激發(fā)了學(xué)生的學(xué)習(xí)興趣。于是我因勢利導(dǎo)讓學(xué)生打開書自主學(xué)習(xí),看看有什么發(fā)現(xiàn)。在這一環(huán)節(jié)中我雖然沒有讓學(xué)生動手操作,但我很好的利用了教材這一載體,放手讓學(xué)生自主學(xué)習(xí),很好的培養(yǎng)了學(xué)生的自學(xué)能力。
二、探究中釋疑,培養(yǎng)學(xué)習(xí)能力
教材雖然不是從過去的整除定義出發(fā),而是通過一個(gè)乘法算式來引出因數(shù)和倍數(shù)的概念,但本質(zhì)上仍是以“整除”為基礎(chǔ)。所以我上課時(shí)特別注意讓學(xué)生明白什么情況下才能討論因數(shù)和倍數(shù)的概念。我舉了一個(gè)反例加以說明.0.2×60=12,我們能說0.2和60是12的因數(shù)嗎,一石激起千層浪,學(xué)生面面相覷,我趁熱打鐵,那就讓我們再到書中去尋找答案吧。學(xué)生再次讀書發(fā)現(xiàn)原來為了研究方便,我們所說的因數(shù)和倍數(shù)指的是整數(shù)一般不包括0。二次讀書讓學(xué)生對因數(shù)和倍數(shù)的.研究范圍有了明確。很好的幫助學(xué)生區(qū)分乘法算式中的“因數(shù)”和本單元中的“因數(shù)”的聯(lián)系和區(qū)別。在同一個(gè)乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù),而后者是相對于“倍數(shù)”而言的,兩者都只能是整數(shù)。我在課堂上反復(fù)強(qiáng)調(diào),幫助孩子們認(rèn)真理解辨析,所以學(xué)生一節(jié)課下來對這組概念就理解透徹了,不會模糊自主探究,合作學(xué)習(xí)。
三、實(shí)踐中發(fā)現(xiàn),優(yōu)化學(xué)習(xí)方法。
在學(xué)生認(rèn)識了因數(shù)與倍數(shù)的概念之后,我又放手讓每個(gè)同學(xué)找出36的所有因數(shù),學(xué)生圍繞我提出的“怎樣才能找全36的所有因數(shù)呢?”這個(gè)問題,去尋找36的所有因數(shù)。由于個(gè)人經(jīng)驗(yàn)和思維的差異性,出現(xiàn)了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的答案中歸納出求一個(gè)數(shù)的因數(shù)的思考方法。既為學(xué)生留足了自主探究的空間,又在方法上有所引導(dǎo),避免了學(xué)生的盲目猜測。通過展示、比較不同的答案,發(fā)現(xiàn)了按順序一對一對找的好方法,突出了有序思考的重要性,有效地突破了教學(xué)的難點(diǎn)。通過觀察12,36,30,18的因數(shù)和2,4,5,7的倍數(shù),讓學(xué)生自己說一說發(fā)現(xiàn)了什么?由于提供了豐富的觀察對象,保證了觀察的目的性。誘發(fā)學(xué)生探索與學(xué)習(xí)的欲望,從而激活學(xué)生的思維。讓學(xué)生在許多的不同中通過合作交流找到相同。
《因數(shù)與倍數(shù)》教學(xué)反思11
在學(xué)習(xí)了“因數(shù)和倍數(shù)”這一單元后,照例要過進(jìn)行復(fù)習(xí)。課堂上,在引導(dǎo)學(xué)生復(fù)習(xí)了“誰是誰的倍數(shù),誰是誰的因數(shù)”、“2、5、3的倍數(shù)的特征”、“奇數(shù)和偶數(shù)”、“素?cái)?shù)和合數(shù)”這些概念后,我要求學(xué)生先寫出20以內(nèi)的素?cái)?shù)(2、3、5、7、11、13、17、19),再寫出20以內(nèi)的合數(shù)(4、6、8、9、10、12、14、15、16、18、20)。這時(shí),我問學(xué)生:“誰能利用這些數(shù)來提一個(gè)問題,考考大家?”學(xué)生一時(shí)啞然,不知從何下手。我微微一笑:“老師來帶個(gè)頭,請問:最小的素?cái)?shù)是多少?”“哦!”學(xué)生立刻醒悟,爭先恐后地舉手發(fā)問:
生1:最小的合數(shù)是多少?
生2:20以內(nèi)有幾個(gè)素?cái)?shù)?
生3:20以內(nèi)有幾個(gè)合數(shù)?
生4:哪個(gè)數(shù)既不是素?cái)?shù)也不是合數(shù)?
生5:哪個(gè)數(shù)既是素?cái)?shù)又是偶數(shù)?
生5:20以內(nèi)有哪幾個(gè)數(shù)既是合數(shù)又是奇數(shù)?
生6:“自然數(shù)不是素?cái)?shù)就是合數(shù)”這句話對不對?
生7:“所有的偶數(shù)都是合數(shù)”,對不對?
生8:“所有的素?cái)?shù)都是奇數(shù)”,對不對?
生9:自然數(shù)按它的因數(shù)的個(gè)數(shù)分成哪幾類?
生10:“1是所有自然數(shù)的因數(shù)”這句話對嗎?
學(xué)生有的.提問,有的作答,情緒高漲,思維活躍,忙得不亦樂乎。
流水不腐,戶樞不蠹”,如果要想讓課堂成為“清澈的渠水”,就必須不斷地為它注入“活水”,這個(gè)“活水”就是一個(gè)個(gè)精妙的提問,而如果這些“活水”就來自學(xué)生自己的思考,那么這將是多么有生命力的課堂!
上述教學(xué)片斷中,教師只是拋出了一個(gè)問題,但就像點(diǎn)著了焰火的引信一樣,課堂立刻綻放出絢爛的火花!學(xué)生紛紛把自己積累的數(shù)學(xué)知識亮了出來,提出了一個(gè)個(gè)問題,既考了考別的同學(xué),又訓(xùn)練了自己的思維和語言表達(dá),又讓大家應(yīng)用概念的能力得到了增強(qiáng),還活躍了課堂氣氛,讓一堂平淡無奇的復(fù)習(xí)課變得精彩紛呈。
由此,我認(rèn)為要培養(yǎng)學(xué)生提問的能力,教師要先培養(yǎng)自己提問的能力,用精妙的、恰到好處的問題,激發(fā)學(xué)生的思維,喚起學(xué)生的思考,只有學(xué)生的思維被調(diào)動起來,才能提出有一定質(zhì)量的問題,促進(jìn)自己和同學(xué)的數(shù)學(xué)能力的提高。
《因數(shù)與倍數(shù)》教學(xué)反思12
通過今天的學(xué)習(xí),你有什么收獲?
課后作業(yè) :課后自已或與同學(xué)合作制作一個(gè)含有因數(shù)和倍數(shù)知識的轉(zhuǎn)盤。
教后反思:
40分鐘的時(shí)間一閃而過,輕松愉悅的課堂氣氛,讓學(xué)生的學(xué)習(xí)情緒空前高漲,學(xué)生的學(xué)習(xí)熱情,學(xué)習(xí)過程中數(shù)學(xué)思維的提升,都在這短短的時(shí)間內(nèi)讓我感覺無盡的驚喜。
課堂導(dǎo)入,親切,有效,讓學(xué)生先在腦海中留下“關(guān)系”這種印象,學(xué)生通過自己閱讀明白誰是誰的因數(shù),誰是誰的倍數(shù),然后通過試一試、練習(xí)、特別是(8是倍數(shù),4是因數(shù)! ( ))的辨析,讓學(xué)生明白:在說倍數(shù)(或因數(shù))時(shí),必須說明誰是誰的.倍數(shù)(或因數(shù))。不能單獨(dú)說誰是倍數(shù)(或因數(shù))。
因數(shù)和倍數(shù)不能單獨(dú)存在。
通過尋找一個(gè)數(shù)的因數(shù),和一個(gè)數(shù)的倍數(shù),讓學(xué)生通過多個(gè)實(shí)例找到規(guī)律。
在教學(xué)中由于過分依賴課件,致使有的環(huán)節(jié)沒有深入,沒有給學(xué)生時(shí)間進(jìn)行
《因數(shù)與倍數(shù)》教學(xué)反思13
這是一節(jié)概念課,關(guān)于“倍數(shù)和因數(shù)”教材中沒有寫出具體的數(shù)學(xué)意義,只是借助乘法算式來認(rèn)識倍數(shù)和因數(shù),從而體會倍數(shù)和因數(shù)的意義,進(jìn)而讓學(xué)生探究尋找一個(gè)數(shù)的倍數(shù)和因數(shù)以及倍數(shù)和因數(shù)的特征。
這部分知識對于四年級學(xué)生而言,沒有什么生活經(jīng)驗(yàn),也談不上有什么新興趣,是一節(jié)數(shù)學(xué)味很濃的概念課,因此為了讓乏味變成有味,在課開始之前,跟同學(xué)們講了韓信點(diǎn)兵的故事,從一個(gè)同余問題的解決讓學(xué)生產(chǎn)生興趣,并告知學(xué)生所用知識與本節(jié)課所學(xué)知識有很大關(guān)聯(lián),引導(dǎo)學(xué)生認(rèn)真學(xué)好本節(jié)課的知識。
在教授倍數(shù)和因數(shù)時(shí),我讓學(xué)生自己動手操作,感受不同形狀下所得到的不同乘法算式,通過這些乘法算式認(rèn)識倍數(shù)和因數(shù),并且讓學(xué)生自己想一道乘法算式,讓同桌用倍數(shù)和因數(shù)說一說,從學(xué)生的自身素材去理解概念,使學(xué)生對新知識印象更深刻,從而使學(xué)生進(jìn)一步理解和掌握倍數(shù)和因數(shù)。但是,在這一環(huán)節(jié)中,由于緊張,忘記讓學(xué)生從“能不能直接說3是因數(shù),12是倍數(shù)”這一反例中體會倍數(shù)和因數(shù)是一種相互依存的關(guān)系,以致到后面做判斷時(shí)出現(xiàn)很多同學(xué)認(rèn)為“6是因數(shù),24是倍數(shù)”這種說法是正確的。
本節(jié)課的難點(diǎn)是找一個(gè)數(shù)的因數(shù),因此,我將教材中先教找一個(gè)數(shù)的倍數(shù)改成先教找一個(gè)數(shù)的因數(shù),也正因?yàn)檎乙粋(gè)數(shù)的因數(shù)比較有難度,所以,我先讓學(xué)生根據(jù)之前例題中的'三個(gè)乘法算式來說一說12的因數(shù),從而讓學(xué)生感受到找一個(gè)數(shù)的因數(shù)可以利用乘法算式來找,并且初步讓學(xué)生感受有序的思想,給學(xué)生一個(gè)方法的認(rèn)知。為了讓學(xué)生得到反思,在找的過程中,請學(xué)生互評,在交流中產(chǎn)生思維的碰撞;請學(xué)生自己糾正,在錯(cuò)誤中產(chǎn)生反思意識,從而能夠提升學(xué)生自主解決問題的能力。
可是,作為一名新教師,對于課堂中的生成,沒有足夠的經(jīng)驗(yàn)和課堂機(jī)智將其很好的轉(zhuǎn)化成學(xué)生所需達(dá)到的目標(biāo),以致跟預(yù)設(shè)的效果不一致,學(xué)生沒有很充分地得到反思。并且對于課堂中的一些細(xì)節(jié)問題,處理得還不夠到位。本節(jié)課的教學(xué)對于我來說是一個(gè)機(jī)會,也是一個(gè)契機(jī),今后,我會不斷完善教學(xué),總結(jié)經(jīng)驗(yàn)教訓(xùn),在各個(gè)方面嚴(yán)格要求自己,爭取在今后的工作中做的更好!
《因數(shù)與倍數(shù)》教學(xué)反思14
教學(xué)目標(biāo):
1、使學(xué)生結(jié)合具體情境初步理解倍數(shù)和因數(shù)的含義,初步理解倍數(shù)和因數(shù)相互依存的關(guān)系。
2、使學(xué)生依據(jù)倍數(shù)和因數(shù)的含義以及已有乘除法知識,通過嘗試、交流等活動,探索并掌握找一個(gè)數(shù)倍數(shù)和因數(shù)的方法,能在1—100的自然數(shù)中找出10以內(nèi)某個(gè)數(shù)的所有倍數(shù),找出100以內(nèi)某個(gè)數(shù)的所有因數(shù)。
3、使學(xué)生在認(rèn)識倍數(shù)和因數(shù)以及找一個(gè)數(shù)的倍數(shù)和因數(shù)的過程中進(jìn)一步感受數(shù)學(xué)知識的內(nèi)在聯(lián)系,提高數(shù)學(xué)思考的水平。
教學(xué)重點(diǎn):
理解因數(shù)和倍數(shù)的含義。
教學(xué)難點(diǎn):
探索并掌握找一個(gè)數(shù)的倍數(shù)和因數(shù)的方法。
教學(xué)過程:
一、認(rèn)識倍數(shù)和因數(shù)
1、操作活動。
。1)小黑板出示要求:用12個(gè)同樣大的正方形拼成一個(gè)長方形。每排擺幾個(gè)?擺了幾排?用乘法算式把自己的擺法表示出來。
(2)整理:全班交流,分別板書4×3=1212×1=126×2=12
3、學(xué)習(xí)“倍數(shù)”和“因數(shù)”的概念
。1)談話:剛才同學(xué)們通過不同的擺法擺出了不同的長方形,而且還寫出了3個(gè)不同的乘法算式,今天,我們就一起來研究乘法算式中,數(shù)與數(shù)之間的關(guān)系。(出示:倍數(shù)和因數(shù))
。2)根據(jù)4×3=12,你能說出誰是誰的倍數(shù)嗎?12是4的幾倍?12是3的幾倍?你能說出誰是誰的因數(shù)嗎?
板書:12是4的倍數(shù),12是3的倍數(shù)
4是12的因數(shù),3是12的因數(shù)
。3)根據(jù)6×2=12,你能說出哪個(gè)數(shù)是哪個(gè)數(shù)的倍數(shù),哪個(gè)數(shù)是哪個(gè)數(shù)的因數(shù)嗎?根據(jù)12×1=12呢?
。4)練一練:從3×6=1836÷4=9中任選一題說一說。
為什么4和9是36的因數(shù)?
4、小結(jié):根據(jù)乘法或除法算式我們可以確定誰是誰的因數(shù),誰是誰的倍數(shù)。為了方便,在研究倍數(shù)和因數(shù)時(shí),所說的數(shù)一般指不是0的自然數(shù)。
二、探索找一個(gè)數(shù)的倍數(shù)的方法
1、談話:在剛才的談話中,我們知道了12是3的倍數(shù),18也是3的倍數(shù)
提問:3的倍數(shù)只有這兩個(gè)嗎?
你還能再寫出幾個(gè)3的倍數(shù)?
你是怎樣想的?
你能按照從小到大的順序有條理地說出3的倍數(shù)嗎?
你能把3的倍數(shù)全都說完嗎?
可以怎樣表示?
2、議一議:你有沒有發(fā)現(xiàn)找3的倍數(shù)的小竅門?(在找3的倍數(shù)時(shí),可以按從小到大的順序,依次用1、2、3……與3相乘,每次乘得的積都是3的倍數(shù))
3、試一試:
。1)2的倍數(shù)有
(2)5的倍數(shù)有
4、想一想:觀察上面幾個(gè)例子,你發(fā)現(xiàn)一個(gè)數(shù)的倍數(shù)有什么特點(diǎn)?
5、練一練:想想做做2
三、探索求一個(gè)數(shù)的因數(shù)的方法
1、提出問題:你能找出36的所有因數(shù)嗎?
2、四人小組合作完成
3、交流整理找一個(gè)數(shù)的因數(shù)的方法。
4、試一試(既要一組一組地找,又要按次序排列)
15的因數(shù)
16的因數(shù)
5、比一比:根據(jù)上面幾個(gè)例子,你發(fā)現(xiàn)一個(gè)數(shù)的因數(shù)有什么特點(diǎn)?和同桌說一說
6、練一練:想想做做
四、課堂總結(jié)。
1、這節(jié)課,你有什么收獲?
五、鞏固提高
1、判斷
(1)12是倍數(shù),3是因數(shù)
。2)6既是2的倍數(shù),又是3的倍數(shù)。
。3)25以內(nèi)4的倍數(shù)有:4,8,12,16,20,24……
(4)6的最小倍數(shù)是12,12的最小因數(shù)是6。
2、看誰反應(yīng)快
游戲準(zhǔn)備:學(xué)生按學(xué)號編成連續(xù)的自然數(shù)。(課前)
游戲規(guī)則:凡是學(xué)號符合以下要求的,請站起來,看誰反應(yīng)快?
。1)誰的學(xué)號是5的倍數(shù)
(2)誰的學(xué)號是24的因數(shù)
。3)誰的`學(xué)號是30的因數(shù)
(4)誰的學(xué)號是1的倍數(shù)
反思:
在教學(xué)過程中出現(xiàn)了一個(gè)問題:是在提問:“根據(jù)4×3=12,你能說出誰是誰的倍數(shù)嗎?12是4的幾倍?12是3的幾倍?你能說出誰是誰的因數(shù)嗎?”時(shí),發(fā)現(xiàn)學(xué)生根本不能回答,本來以為學(xué)生在三年級的時(shí)候應(yīng)該對這部分的內(nèi)容有所了解,能順利回答,但是在課后與三年級的教師交流后發(fā)現(xiàn)沒有這方面的內(nèi)容安排。由此,我想:新課程實(shí)施了五年,我其實(shí)還是門外漢,還不能很好地適應(yīng)新課程的要求,新課程的教材編排具有連續(xù)性,而老版本經(jīng)常是一個(gè)知識點(diǎn)安排在一起,注重深度?磥斫處煵还庖P(guān)心自己年級的教材內(nèi)容,還得知道整個(gè)教材編排體系,知道各個(gè)年級知識點(diǎn)之間的聯(lián)系。這樣才能更好地完成教學(xué)任務(wù),使學(xué)生得到應(yīng)有的發(fā)展而不是降低要求的發(fā)展或者是被強(qiáng)行提高要求的發(fā)展。
《因數(shù)與倍數(shù)》教學(xué)反思15
教學(xué)內(nèi)容
教科書第70-72頁的例題和“試一試”、“想想做做”第1-3題。
教學(xué)目標(biāo)
1、讓學(xué)生通過操作,利用乘法算式,認(rèn)識倍數(shù)的因數(shù)的意義,理解倍數(shù)和因數(shù)的關(guān)系,掌握找一個(gè)數(shù)的因數(shù)和倍數(shù)的方法,發(fā)現(xiàn)一個(gè)數(shù)的倍數(shù)、因數(shù)的某些特征。
2、讓學(xué)生體會一個(gè)數(shù)的倍數(shù)與因數(shù)之間相互依存的關(guān)系,發(fā)展學(xué)生的數(shù)感,培養(yǎng)學(xué)生觀察、分析、抽象能力,并在找一個(gè)數(shù)的倍數(shù)和因數(shù)的過程中,培養(yǎng)學(xué)生思維的有序性。
3、使學(xué)生感悟數(shù)學(xué)知識內(nèi)在聯(lián)系的邏輯美,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):
1、理解倍數(shù)與因數(shù)的意義及相互依存關(guān)系。
2、掌握找一個(gè)數(shù)的倍數(shù)和因數(shù)的方法。
難點(diǎn):
1、理解倍數(shù)與因數(shù)的相互依存關(guān)系。
2、找全一個(gè)數(shù)的所有因數(shù)。
教學(xué)具準(zhǔn)備:小黑板、12個(gè)小正方形
教學(xué)過程設(shè)計(jì)
(一)激趣導(dǎo)入
陶老師先來考考大家的語文水平,你能用“()是()的()”這樣一句話來表示陶老師和你的關(guān)系嗎?
人與人之間有這樣相互依存的關(guān)系,我們的數(shù)學(xué)中也有這樣相互依存的關(guān)系,相信通過本節(jié)課的學(xué)習(xí)你會有所發(fā)現(xiàn)。
。ǘ┱J(rèn)識倍數(shù)和因數(shù)
1、出示12個(gè)小正方形。
師:數(shù)一數(shù),一共有幾個(gè)小正方形?如果老師請你把這12個(gè)同樣的小正方形拼成一個(gè)長方形,會拼嗎?能不能用一條簡單的乘法算式表達(dá)出來?
2、指名學(xué)生列式,提問其他學(xué)生:“你知道他是怎么擺的嗎?”要求學(xué)生說出每排擺幾個(gè),擺了幾排。
3、根據(jù)學(xué)生的回答,適時(shí)貼出各種不同擺法:
12×1=12
6×2=12
4×3=12
4、12個(gè)同樣大小的正方形拼成長方形,能列出三道不同的乘法算式,千萬別小看這些乘法算式,咱們今天研究的內(nèi)容就在這里。以4×3=12為例,12是4的倍數(shù),那12也是(3的倍數(shù)),4是12的因數(shù),那3也是(12的因數(shù))。同學(xué)們很有遷移的能力,這就是我們今天要研究的倍數(shù)和因數(shù)。(板書課題)
5、根據(jù)另外兩道乘法算式,說說誰是誰的倍數(shù),誰是誰的因數(shù)。
6、剛才在聽的時(shí)候發(fā)現(xiàn)12×1=12說因數(shù)和倍數(shù)時(shí)有兩句特別拗口,是哪兩句?
說明:雖然是拗口了點(diǎn),不過數(shù)學(xué)上還真是這么回事。12的確是12的因數(shù),12也確實(shí)是12的倍數(shù)。為了方便,我們在研究倍數(shù)和因數(shù)時(shí)所說的數(shù)一般指不是0的自然數(shù)。
7、說一說
。1)根據(jù)72÷8=9,說一說哪一個(gè)數(shù)是哪一個(gè)數(shù)的倍數(shù),哪一個(gè)數(shù)是哪一個(gè)數(shù)的因數(shù)。
。2)從下面的數(shù)中任選兩個(gè)數(shù),說一說哪一個(gè)數(shù)是哪一個(gè)數(shù)的倍數(shù),哪一個(gè)數(shù)是哪一個(gè)數(shù)的因數(shù)。
3、5、18、20、36
。ㄈ┨剿髡乙粋(gè)數(shù)因數(shù)和倍數(shù)的方法。
1、找一個(gè)數(shù)的因數(shù)。
(1)談話:看來同學(xué)們對于倍數(shù)和因數(shù)已經(jīng)掌握得不錯(cuò)了。不過剛才陶老師在聽的時(shí)候發(fā)現(xiàn)了一個(gè)奧秘,好幾個(gè)數(shù)都是36的因數(shù),你發(fā)現(xiàn)了嗎?這五個(gè)數(shù)中那些數(shù)是36的因數(shù)?
其實(shí)要找36的一兩個(gè)因數(shù)并不難,難就難在你有沒有能力把36的所有因數(shù)全部找出來?能不能?
由于這個(gè)問題有一點(diǎn)難度,所以陶老師作幾點(diǎn)說明:
、偎伎家幌,什么樣的數(shù)是36的因數(shù)?
、诳梢元(dú)立完成,也可以同桌合作完成。
、巯胍幌朐趺凑也恢貜(fù)不遺漏,如有困難可參照書本第71頁。
、軐懴乱驍(shù),如果能把怎么找到的方法寫在作業(yè)紙上更好。
。2)學(xué)生找完后交流:你是怎么找的?怎樣找不重復(fù)不遺漏?
。3)小結(jié):為了不重復(fù)不遺漏,我們在尋找一個(gè)數(shù)的因數(shù)時(shí),可以按一定順序,一組一組地寫出36的所有因數(shù)。
。4)完成“試一試”,然后集體交流。
2、找一個(gè)數(shù)的倍數(shù)。
。1)談話:尋找一個(gè)數(shù)的因數(shù)大家掌握得不錯(cuò),這節(jié)課還要研究倍數(shù)呢!你能找出3的倍數(shù)嗎?想一想,什么樣的數(shù)是3的倍數(shù)?
。2)師生共同尋找。
提問:怎么找不重復(fù)不遺漏?能全部說完嗎?可以怎樣表示3的倍數(shù)?
。3)小結(jié)并規(guī)范寫法:
3的倍數(shù):3、6、9、12、15……
。4)完成“試一試”,然后集體交流。
3、探索一個(gè)數(shù)的倍數(shù)和因數(shù)的特點(diǎn):
、儆^察比較:一個(gè)數(shù)的倍數(shù)和因數(shù)有什么特點(diǎn)呢?
②學(xué)生在小組內(nèi)進(jìn)行比較、分析、討論,然后集體交流。
、坌〗Y(jié)歸納:一個(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無限的,一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的;一個(gè)數(shù)的倍數(shù)中最小的是它本身,最大的不存在,而一個(gè)數(shù)的
因數(shù)中最小的是1,最大的是它本身。
4、填一填。
15的因數(shù)有()
30以內(nèi)7的倍數(shù)有()
。ㄋ模┱n堂小結(jié)
通過本節(jié)課的學(xué)習(xí),你有什么收獲?你發(fā)現(xiàn)數(shù)學(xué)中相互依存的關(guān)系了嗎?其實(shí)數(shù)學(xué)中有趣的事兒多著呢!
閱讀《神奇而有趣的“完美數(shù)”》,感受數(shù)學(xué)的神奇。
學(xué)生嘗試尋找第二個(gè)完美數(shù),師提示:第二個(gè)完美數(shù)比20大,比30小,是個(gè)雙數(shù),而且正好是老師的年齡。
。ㄎ澹┱n堂作業(yè)
《數(shù)學(xué)補(bǔ)充習(xí)題》
教后反思:
總的感覺是上好一堂課不容易。倍數(shù)和因數(shù)是學(xué)生聞所未聞的兩個(gè)新概念,是純知識性的'內(nèi)容,而且整節(jié)課的容量較大,學(xué)生能有效的掌握每一個(gè)知識點(diǎn)比較困難。為了更好更有效的達(dá)到教學(xué)目的,突破教學(xué)難點(diǎn),我主要注重下面三個(gè)方面的設(shè)計(jì):
1、捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解概念間的關(guān)系。
試上下來我感覺學(xué)生對倍數(shù)因數(shù)間的相互依存關(guān)系理解不到位,看著學(xué)生我突然想到可以利用我與學(xué)生的關(guān)系呀。于是我把生活中的相互依存關(guān)系遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計(jì)自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)對數(shù)學(xué)的興趣,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系。
2、以思維的條理性和有序性作為難點(diǎn)的突破口。
在教學(xué)一個(gè)數(shù)的因數(shù)時(shí),我讓學(xué)生通過比較發(fā)現(xiàn),有序的思考一個(gè)數(shù)的因數(shù)不但可以避免重復(fù)、遺漏,而且書寫整潔清楚。讓學(xué)生充分感受有條理、有序的思考是一種非常有效的學(xué)習(xí)方法。當(dāng)學(xué)習(xí)求一個(gè)數(shù)的倍數(shù)時(shí),學(xué)生就自然而然的去有序的思考,通過合作交流,學(xué)生作業(yè)的匯報(bào),發(fā)現(xiàn)只有有序的去找,才沒有遺漏,沒有重復(fù)。整節(jié)課下來,我發(fā)現(xiàn)這種有序思維不但能加速解決數(shù)學(xué)問題的思維進(jìn)度,而且還有利于優(yōu)化學(xué)生的思維品質(zhì),快速發(fā)展學(xué)生的思維。
3、以精心設(shè)計(jì)的練習(xí)作為有效訓(xùn)練的載體。
為了幫助學(xué)生理解數(shù)和數(shù)之間的倍數(shù)和因數(shù)關(guān)系,練習(xí)中我設(shè)計(jì)了72÷8=9這道除法算式,讓學(xué)生說說哪一個(gè)數(shù)是哪一個(gè)數(shù)的倍數(shù),哪一個(gè)數(shù)是哪一個(gè)數(shù)的因數(shù),這樣學(xué)生就明白了除法算式中也有倍數(shù)和因數(shù)關(guān)系。接著我有設(shè)計(jì)了3、5、18、20、36這5個(gè)數(shù),運(yùn)用所學(xué)知識讓學(xué)生選擇性說說哪兩個(gè)數(shù)存在倍數(shù)和因數(shù)的關(guān)系。這樣的設(shè)計(jì),培養(yǎng)了學(xué)生觀察、分析問題、口頭表達(dá)的能力,也為了更進(jìn)一步鞏固了倍數(shù)和因數(shù)的概念理解。在課尾,我還設(shè)計(jì)了尋找“完美數(shù)”的活動,這一活動充分調(diào)動學(xué)生參與學(xué)習(xí)、主動學(xué)習(xí)的積極性,并讓學(xué)生感受到了數(shù)學(xué)的神齊、有趣,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
【《因數(shù)與倍數(shù)》教學(xué)反思】相關(guān)文章:
倍數(shù)和因數(shù)的教學(xué)反思06-30
《因數(shù)與倍數(shù)》教學(xué)反思15篇08-06
《因數(shù)和倍數(shù)》教學(xué)反思15篇05-14
因數(shù)和倍數(shù)教學(xué)反思(15篇)11-25
倍數(shù)和因數(shù)教學(xué)反思(15篇)09-03
因數(shù)和倍數(shù)教學(xué)反思20篇01-07