91国產乱老熟视頻老熟女,97在线起碰视频,麻豆Av一区二区,亚洲视频国产91www.

<pre id="jdrot"></pre>

<td id="jdrot"><strong id="jdrot"></strong></td>
      <pre id="jdrot"></pre>

          當(dāng)前位置:9136范文網(wǎng)>教育范文>教學(xué)反思>《分式方程》教學(xué)反思

          《分式方程》教學(xué)反思

          時間:2024-06-19 07:24:35 教學(xué)反思 我要投稿

          《分式方程》教學(xué)反思

            作為一名優(yōu)秀的教師,教學(xué)是我們的任務(wù)之一,對學(xué)到的教學(xué)技巧,我們可以記錄在教學(xué)反思中,我們該怎么去寫教學(xué)反思呢?下面是小編收集整理的《分式方程》教學(xué)反思,歡迎大家借鑒與參考,希望對大家有所幫助。

          《分式方程》教學(xué)反思

          《分式方程》教學(xué)反思1

            解分式方程的思想是將分式方程轉(zhuǎn)化為整式方程,驗根是解分式方程必不可少的步驟。分式方程又是解決實際問題的工具之一。

            教學(xué)設(shè)計中蘊涵的數(shù)學(xué)思想和數(shù)學(xué)方法:《分式》一章在教學(xué)上應(yīng)多用類比的方法,與分?jǐn)?shù)進(jìn)行類比教學(xué),使學(xué)生明確分式與分?jǐn)?shù)、分式與整式等方面的區(qū)別與聯(lián)系,體會分式的模型思想,進(jìn)一步發(fā)展符號感,一定能取到事半功倍之效。而解分式方程的基本思想是把分式方程轉(zhuǎn)化為整式方程。解可化為一元一次方程的分式方程,也是以一元一次方程的解法為基礎(chǔ),只是需把分式方程化成整式方程,所以教學(xué)時應(yīng)注意重新舊知識的聯(lián)系與區(qū)別,注重滲透轉(zhuǎn)化的思想,同時要適當(dāng)復(fù)習(xí)一元一次方程的解法。

            教學(xué)目標(biāo):

            1.了解分式方程的概念,和產(chǎn)生增根的`原因。

            2.掌握分式方程的解法,會解可化為一元一次方程的分式方程,會檢驗一個數(shù)是不是原方程的增根。

            重點、難點

            1.重點:會解可化為一元一次方程的分式方程,會檢驗一個數(shù)是不是原方程的增根。

            2.難點:會解可化為一元一次方程的分式方程,會檢驗一個數(shù)是不是原方程的增根。

            3.認(rèn)知難點與突破方法

            解可化為一元一次方程的分式方程,也是以一元一次方程的解法為基礎(chǔ),只是需把分式方程化成整式方程,所以教學(xué)時應(yīng)注意重新舊知識的聯(lián)系與區(qū)別,注重滲透轉(zhuǎn)化的思想,同時要適當(dāng)復(fù)習(xí)一元一次方程的解法。至于解分式方程時產(chǎn)生增根的原因只讓學(xué)生了解就可以了,重要的是應(yīng)讓學(xué)生掌握驗根的方法。

            要使學(xué)生掌握解分式方程的基本思路是將分式方程轉(zhuǎn)化整式方程,具體的方法是“去分母”,即方程兩邊統(tǒng)稱最簡公分母。

          《分式方程》教學(xué)反思2

            一、設(shè)計思路:本節(jié)課作為分式方程的第一節(jié)課,是在學(xué)生掌握了一元一次方程的解法及分式四則混合運算的基礎(chǔ)上展開的,既是對前一節(jié)內(nèi)容的深化,又為以后的教學(xué) 應(yīng)用 打下了良好的基礎(chǔ),因而在教材中具有不可忽略的地位與作用。本節(jié)的教學(xué)重點是讓學(xué)生清楚的認(rèn)識到分式方程也是解決實際問題的工具之一,探索分式方程概念,明確分式方程與整式方程的區(qū)別和聯(lián)系。

            二.教學(xué)知識點:在本課的教學(xué)過程中,我認(rèn)為應(yīng)從這樣的幾個方面入手:

            1、在實際問題中充分理解題意,尋找等量關(guān)系,并依據(jù)等量關(guān)系列出方程。

            2、分式方程和整式方程的區(qū)別:分清楚分式方程必須滿足的兩個條件,⑴方程式里必須有分式,⑵分母中含有未知數(shù)。這兩個條件是判斷一個方程是否為分式方程的充要條件。

            3、分式方程和整式方程的聯(lián)系:分式方程通過方程兩邊都乘以最簡公分母,約去分母,就可以轉(zhuǎn)化為整式方程來解,教學(xué)時應(yīng)充分體現(xiàn)這種化歸思想的教學(xué)。

            三、總體反思:首先是學(xué)生如何順利的找到題目中的等量關(guān)系,書本給出兩個例子較難,按照書本的引入,一開始課堂就可能處以一種安靜的思維,處于很難打開的狀態(tài),不能有效地激發(fā)學(xué)生學(xué)習(xí)興趣與激情,所以才在學(xué)案中搭梯子降低難度,讓學(xué)生體會到成功的喜悅,這樣學(xué)生才會愿意繼續(xù)探索與學(xué)習(xí);實際問題的.難度設(shè)置上是層層深入,問題也是分層次性,能夠讓不同層面的學(xué)生都有不同的體會與感受。

            其次在教學(xué)過程中應(yīng)提高教師自身的隨機應(yīng)變的能力和預(yù)設(shè)問題能力,課前充分備好學(xué)生。例如:以前學(xué)過整式方程,我們以前只是說一次方程之類的,沒有系統(tǒng)的歸類它是整式方程。如果不事先詳細(xì)解釋清楚整式方程這個詞時,合作探究二進(jìn)行的就不會很順利。

            最后,我們應(yīng)讓恰到好處的鼓勵語和評價貫穿于教學(xué)過程中,只有這樣,學(xué)生才能不斷增強自信,在愉悅中探究新知,解決問題。

            總而言之,教無定法,學(xué)無定法。我們應(yīng)在教改的道路上不斷充實自我,完善自我。

          《分式方程》教學(xué)反思3

            在本節(jié)課的教學(xué)過程中首先明確目標(biāo)是讓學(xué)生如何找到等量關(guān)系,書本原先給出兩個例子較難達(dá)到這個教學(xué)效果,原因是學(xué)生對毛利率的概念本身不清楚,按照書本的引入,一開始課堂就可能處以一種安靜的思維很難打開的狀態(tài),不能有效地激發(fā)學(xué)生學(xué)習(xí)興趣與激情,所以才用學(xué)生經(jīng)過自己努力思考之后完全能解答的題目作為第一題,讓學(xué)生體會到成功的喜悅,這樣學(xué)生才會愿意繼續(xù)探索與學(xué)習(xí);其次應(yīng)用題的難度設(shè)置上是層層深入,提問是分層次性,能夠讓不同層面的學(xué)生都有不同的體會與感受。

            將“毛利率”概念的問題采用調(diào)查的方法,能夠有效發(fā)揮學(xué)生右腦在形象思維上優(yōu)勢,從而為后面的解答抽象的邏輯、左腦理性思考做了準(zhǔn)備;能夠最大限度發(fā)揮學(xué)生原有的能力。

            公式變形,書本例題是才用將右邊先進(jìn)行變形,再倒過來分析,我認(rèn)為學(xué)生的解答方法更具有對稱美,在課堂中予以充分的.肯定,這一方面培養(yǎng)學(xué)生的審美能力、更重要的是肯定學(xué)生進(jìn)行思考的價值、從而激發(fā)學(xué)生思考的意愿與熱情!

            其實任何一節(jié)課的教學(xué)設(shè)計以及對課堂的動態(tài)把握只能針對具體實際情況進(jìn)行調(diào)整分析,如果學(xué)生對“毛利率”等概念已經(jīng)非常熟悉、閱讀理解能力很強那么這節(jié)課的教學(xué)設(shè)計肯定是另一番樣子。

          《分式方程》教學(xué)反思4

            列方程解應(yīng)用題七年級一年就遇到了三次,一元一次的,二元一次的,還有這次的分式的,步驟基本上一樣,審、設(shè)、列、解、驗、答。

            問題還是出現(xiàn)在審題上,其實方法也類似,找已知的未知的量,找描述等量關(guān)系的語句,可以列表分析,還可以直接將文字轉(zhuǎn)化為數(shù)學(xué)式子,我經(jīng)常在啟發(fā)時說,某某同學(xué)剛才回答時為什么能很快找到等量關(guān)系呢,是因為他知道要關(guān)注那些重要的東西,比如數(shù)據(jù),比如題中出現(xiàn)的量,等等,就想語文閱讀時弄清楚時間,人物,事情一樣。

            于是在課堂上例題的分析,我總是把大量的時間放在啟發(fā)學(xué)生理解題意上,老實說就算是語文的課外閱讀,學(xué)生多讀幾遍也總讀點味道出來了,可對于數(shù)學(xué)問題,有些學(xué)生讀了一遍題目愣是一點感覺沒有,對數(shù)字稍微敏感一點的.也能找到相應(yīng)的量吧,但就是這些,讓學(xué)生最頭疼的,最郁悶,想得抓狂了還是找不到等量關(guān)系。

            還是多留給學(xué)生點思考的空間吧。其實大多數(shù)的學(xué)生在老師的啟發(fā)下還是能對問題的理解深刻一點的,題目做的多了,總會產(chǎn)生一些感覺,套用一句老話,質(zhì)變是量變的積累,量變到了一定的程度就會發(fā)生質(zhì)變,希望我和學(xué)生們的努力能讓質(zhì)變早日到來。

          《分式方程》教學(xué)反思5

            本節(jié)課我主要采取“361”的課堂教學(xué)模式,讓學(xué)生自習(xí)的基礎(chǔ)上進(jìn)上步加深對知識的掌握。這種學(xué)習(xí)模式符合課改要求,但是經(jīng)過教學(xué)發(fā)現(xiàn),以以往的教學(xué)中,學(xué)生在解分式方程時需要花費很長時間,學(xué)生在有限的時間內(nèi)難以完成教學(xué)任務(wù),但本節(jié)課,通過學(xué)生的課前的預(yù)習(xí),節(jié)約的課堂上的時間。

            教學(xué)上應(yīng)多用類比的方法,與分?jǐn)?shù)進(jìn)行類比教學(xué),使學(xué)生明確分式與分?jǐn)?shù)、分式與整式等方面的區(qū)別與聯(lián)系,體會分式的模型思想,進(jìn)一步發(fā)展符號感,一定能取到事半功倍之效。而解分式方程的基本思想是把分式方程轉(zhuǎn)化為整式方程。解可化為一元一次方程的分式方程,也是以一元一次方程的.解法為基礎(chǔ),只是需把分式方程化成整式方程,所以教學(xué)時應(yīng)注意重新舊知識的聯(lián)系與區(qū)別,注重滲透轉(zhuǎn)化的思想,同時要適當(dāng)復(fù)習(xí)一元一次方程的解法。

            解可化為一元一次方程的分式方程,也是以一元一次方程的解法為基礎(chǔ),只是需把分式方程化成整式方程,所以教學(xué)時應(yīng)注意重新舊知識的聯(lián)系與區(qū)別,注重滲透轉(zhuǎn)化的思想,同時要適當(dāng)復(fù)習(xí)一元一次方程的解法。至于解分式方程時產(chǎn)生增根的原因只讓學(xué)生了解就可以了,重要的是應(yīng)讓學(xué)生掌握驗根的方法。

            要使學(xué)生掌握解分式方程的基本思路是將分式方程轉(zhuǎn)化整式方程,具體的方法是“去分母”,即方程兩邊統(tǒng)稱最簡公分母。

            在教學(xué)過程中,由于種種原因,存在著不少的不足。

            1、回顧引入部分題目有點多,應(yīng)該選擇簡單有代表性的一兩個題目,循序漸進(jìn),符合人類認(rèn)知規(guī)律。

            2、教學(xué)重點強調(diào)力度不夠。對學(xué)生理解消化能力過于相信,而分式方程的難點就是第一步,即將分式方程轉(zhuǎn)化成整式方程。在這里,需要特別強化這個過程,應(yīng)該對其進(jìn)行專項訓(xùn)練或重點分析。例如,就學(xué)生的不同做法進(jìn)行分析,讓他們明白課本的這種方法最簡單最方便。

            3、時間掌握不太好。學(xué)生預(yù)習(xí)還不夠充分,導(dǎo)致突發(fā)事件過多,以致總結(jié)過于匆忙。

          《分式方程》教學(xué)反思6

            一.設(shè)計思路:

            設(shè)計思路建立在我校目標(biāo)教學(xué)的前提下,由學(xué)生自主導(dǎo)學(xué),然后再由教師考查和點撥,但是由于種種原因,我最終決定給學(xué)生一個半開半閉的區(qū)間。這節(jié)課的關(guān)鍵在前面的這步過渡,究竟是給學(xué)生一個完全自由的空間還是說讓學(xué)生在老師的引導(dǎo)下去完成,我先后作了多次試驗和論證,認(rèn)為“完全開放”符合設(shè)計思路,但是學(xué)生在有限的時間內(nèi)難以完成教學(xué)任務(wù),故我們最終決定和學(xué)生一起共同完成。

            二.教學(xué)知識點:

            1.在本課的'教學(xué)過程中,掌握范圍分式方程的解法是關(guān)鍵,所以由兩個習(xí)題過渡后,我復(fù)習(xí)了一元一次方程的解法,然后引導(dǎo)學(xué)生嘗試?yán)媒庖辉淮畏匠谭椒ǖ幕A(chǔ)上一起探索探索解分式方程的解法。我先作一示范,學(xué)生練習(xí)格式,接著出現(xiàn)有增根的練習(xí)題,依然讓學(xué)生解決,由于學(xué)生不會檢驗根的情況,所以,些時再詳究增根產(chǎn)生的原因,怎樣檢驗增根等問題。

            2.在利用類比法解分式方程這一過程中,分式方程通過方程兩邊都乘以最簡公分母,約去分母,就可以轉(zhuǎn)化為整式方程來解,教學(xué)時應(yīng)滲透種化歸思想的教學(xué)。

            3.本節(jié)課的難點是對分式方程可能產(chǎn)生增根的原因,我為了讓學(xué)生更深刻的理解就用了兩個分式方程的解答過程進(jìn)行對比,體現(xiàn)驗根的重要性及必要性,

            充分體現(xiàn)學(xué)生為主體,教師為主導(dǎo)的教學(xué)體系。

            三.課堂效果:

            在這節(jié)公開課上,學(xué)生狀態(tài)不錯,所有的學(xué)生都能積極思考,踴躍回答問題,在課堂練習(xí)和最后的課堂小測里,學(xué)生的作答規(guī)范正確,而且對于增根產(chǎn)生的原因及相關(guān)知識點的難題的突破學(xué)生掌握的不錯。

            整節(jié)課下來,基本能夠達(dá)成教學(xué)目標(biāo),但是作為年輕教師,我在一些細(xì)節(jié)的處理上仍然需要改進(jìn)。個別教學(xué)語言不夠規(guī)范,而且利用新知識的學(xué)習(xí)過程,對舊知識的復(fù)習(xí)仍然不夠,語速有點快,個別問題的引導(dǎo)可以更深層次,沒有充分放手讓學(xué)生突破難點,也是比較遺憾的地方,希望聽課的老師給我多提意見,我會珍惜的。

          《分式方程》教學(xué)反思7

            本節(jié)課的重點是探究分式方程的解法,我首先舉一道一元一次方程復(fù)習(xí)其解法,然后通過解一道分式方程,啟發(fā)引導(dǎo)學(xué)生參照一元一次方程的解法,由學(xué)生自己探索、歸納分式方程的解法。學(xué)生不是停留在會課本知識層面,而是站在研究者的角度深入其境,使學(xué)生的思維得到發(fā)揮。

            在教學(xué)設(shè)計上,以探究任務(wù)啟發(fā)引導(dǎo)學(xué)生自學(xué)自悟的方式,提供了學(xué)生自主探究的舞臺,營造了鍛練思維的空間,在經(jīng)歷知識的發(fā)現(xiàn)過程中,培養(yǎng)了學(xué)生探究、歸納的能力。在課堂教學(xué)中,我時時注意營造思維氛圍,讓學(xué)生在探究中學(xué)會思考、表達(dá)。

            在本課的教學(xué)過程中,我認(rèn)為應(yīng)從這樣的幾個方面入手:

            1。分式方程和整式方程的區(qū)別:分清楚分式分式方程必須滿足的兩個條件,⑴方程式里必須有分式,⑵分母中含有未知數(shù)。這兩個條件是判斷一個方程是否為分式方程的.充要條件。同時,由于分母中含有未知數(shù),所以將其轉(zhuǎn)化為整式方程后求出的解就應(yīng)使每一個分式有意義,否則,這個根就是原方程的增根。正是由于分式方程與整式方程的區(qū)別,在解分式方程時必須進(jìn)行檢驗。

            2.分式方程和整式方程的聯(lián)系:分式方程通過方程兩邊都乘以最簡公分母,約去分母,就可以轉(zhuǎn)化為整式方程來解,教學(xué)時應(yīng)充分體現(xiàn)這種化歸思想的教學(xué)。

            3。解分式方程時,如果分母是多項式時,應(yīng)先寫出將分母進(jìn)行因式分解的步驟來,從而讓學(xué)生準(zhǔn)確無誤地找出最簡公分母

            4.對分式方程可能產(chǎn)生增根的原因,要啟發(fā)學(xué)生認(rèn)真思考和討論。

            在教學(xué)方法上,我采用類比滲透思想方法進(jìn)行教學(xué),通過與一元一次方程解法相比較,啟發(fā)引導(dǎo)學(xué)生自主探究、歸納分式方程的解法。運用類比教學(xué)法具有以下三方面的優(yōu)點:

            1。通過復(fù)習(xí)一元一次方程的解法,學(xué)生在探究、歸納分式方程解法的同時進(jìn)行類比,讓學(xué)生在解分式方程時有法可循,而不會覺得無從下手。

            2。把分式方程的解法與一元一次方程的解法進(jìn)行相比較,讓學(xué)生既可以溫習(xí)舊知識,又可以加深對新知識的記憶。

            3。通過對一元一次方程和分式方程解法的類比,更能突顯分式方程解法中驗根的重要性。

          《分式方程》教學(xué)反思8

            應(yīng)用題教學(xué)是培養(yǎng)學(xué)生分析問題和解決問題的一個非常重要的手段。但應(yīng)用題閱讀量大、建模難度高,學(xué)生往往無從下手。在教學(xué)中,我發(fā)現(xiàn)教師教的吃力,學(xué)生學(xué)的也很吃力,很多學(xué)生看見應(yīng)用題就有一種說不出的恐懼感。于是在列分式方程解應(yīng)用題的教學(xué)中,我試著運用表格分析法來進(jìn)行應(yīng)用題的教學(xué),讓學(xué)生有章可循,并取得了很好的效果。

            一、教學(xué)案例展示

            例題:某校招生錄取時,為了防止數(shù)據(jù)輸入出錯,2640名學(xué)生的成績數(shù)據(jù)分別由兩位程序操作員各向計算機輸入一遍,然后讓計算機比較兩人的輸入是否一致。已知甲的輸入速度是乙的2倍,結(jié)果甲比乙少用2小時輸完。問這兩個操作員每分鐘各能輸入多少名學(xué)生的.成績?

            分析:題中涉及工作量、工作效率、工作時間三量關(guān)系,甲、乙兩種狀態(tài)。根據(jù)題意,設(shè)乙每分鐘能輸入x名學(xué)生的成績,則甲每分鐘能輸入2x名學(xué)生的成績,用表格分析問題。

            步驟一:列出表格

            步驟二:依次填寫表格信息

            表格的第一行填寫題中最清晰的量,即工作量(甲、乙的工作量均為2640名學(xué)生);表格的第二行填寫題中所設(shè)的量,即工作效率(甲的工作效率是2x名/分鐘,乙的工作效率):表格第三行填寫第三個量,即工作時間

          《分式方程》教學(xué)反思9

            進(jìn)入初三總復(fù)習(xí)以來,我一直都在嘗試探索一種比較適合總復(fù)習(xí)課的課堂教學(xué)模式,經(jīng)過近兩周的教學(xué)實踐,我基本形成了以下的課堂教學(xué)流程:作業(yè)評析→出示學(xué)習(xí)目標(biāo)→考點分析→學(xué)生獨立完成學(xué)案→小結(jié)歸納→課堂檢測,今天在進(jìn)行“可轉(zhuǎn)化為整式方程的分式方程”的復(fù)習(xí)課時,我也是按這樣的流程來進(jìn)行,沒想到發(fā)生了一些意外,以致于影響了整堂課的教學(xué)效果。

            在作業(yè)評析環(huán)節(jié),我照常收集學(xué)生上堂課測驗及課后作業(yè)中存在的問題,由學(xué)生講解其解答方法與思路,然后再給時間讓學(xué)生自行改正。為了突出本節(jié)課與分式的化簡求值的區(qū)別,我還收集了學(xué)生以往在分式的運算中容易出錯的一個問題。沒想到仍有相當(dāng)多的學(xué)生在解答這個問題時卻依然遇到了當(dāng)初那樣的困難,出現(xiàn)了同樣的錯誤,于是我不得不已再花時間讓學(xué)生自我反思與自我改正解答的方法。這樣,課堂已過去了10來分鐘的時間了,對后面的教學(xué)產(chǎn)生了直接的影響。

            在學(xué)生獨立完成學(xué)案的過程中,雖然我在此之前曾引導(dǎo)學(xué)生回顧解分式方程的一般步驟,也書寫在黑板上,但我沒想到的'是依然有相當(dāng)多的學(xué)生對解分式方程的步驟是陌生的,特別是解答過程的書寫更是顯得百花齊放,有個別學(xué)生甚至于無從下手。于是我不得不已用一個例題示范解答過程,這樣又花去了不少的時間,導(dǎo)致學(xué)生在課堂教學(xué)內(nèi)容難以順利完成。

            那么,是什么原因?qū)е鲁霈F(xiàn)了這些意外呢?作業(yè)的評析環(huán)節(jié)為什么要花這么多的時間呢?學(xué)生為什么地分式方程的解答思路過程是如此的陌生呢?

            答案并不難以找到。

            一方面,在作業(yè)評析的環(huán)節(jié)里,我收集到的問題都是學(xué)生容易出錯的問題或感到比較困難的問題,雖然這些問題他們都曾遇到過,但難度自然不會小,因此當(dāng)需要他們再次解答時自然也就容易出現(xiàn)錯誤,因此所花的時間當(dāng)然就較多了。

            另一方面,學(xué)生對分式方程的解答思路方法的陌生,并不是因為分式方程的解答思路方法有多難或有多復(fù)雜,而是因為這部分內(nèi)容離當(dāng)初學(xué)生學(xué)習(xí)的時間太遠(yuǎn)了,而且當(dāng)初在學(xué)習(xí)這部分內(nèi)容時所用的課時就非常少,因此在學(xué)生的大腦中留下的印象并不深刻。

            問題原因似乎找到了,那么有沒有什么好的辦法去解決呢?

            先來看作業(yè)評析環(huán)節(jié)中出現(xiàn)的問題。仔細(xì)分析課前準(zhǔn)備及教學(xué)過程中的每一個環(huán)節(jié),再回憶當(dāng)初這些問題的解答方法,我發(fā)現(xiàn)了問題的根源,當(dāng)時在解答這些較難或較易出錯的問題時,為了趕課堂的教學(xué)時間,完成教學(xué)任務(wù),我沒有給時間讓學(xué)生進(jìn)行充分的交流,而是包辦式的進(jìn)行講解分析,那時雖然講解得清晰易懂,學(xué)生當(dāng)時也反饋能聽明白了,但當(dāng)要他們真正動手時,卻依然犯同樣的錯誤。因此,缺少交流的問題講解,雖然聽懂,但不會做。同時,我選擇的問題較多(3個)也是花費時間較多的原因,但如果不把這些易出錯的問題都解決,那么學(xué)生所積累下的問題豈不是越來越多了?

            再來看我所編寫的學(xué)案吧。我本以為學(xué)生對分式方程的解答思路步驟是非常熟悉的,所以沒有在學(xué)案中安排例題示范去讓學(xué)生自主閱讀、復(fù)習(xí)。那么,在學(xué)案中安排例題示范會不會比讓學(xué)生在課堂練習(xí)過程中出現(xiàn)問題時再解釋好些呢?我想,前者也許會省下課堂教學(xué)時間,但后者也許能給學(xué)生更深的印象,后者也許教學(xué)效果會更好。

            另一方面,課前我已預(yù)測到學(xué)生可能會把分式方程的解法與分式的化簡相混淆起來,很有可能什么出現(xiàn)在進(jìn)行分式的化簡時也去分母的錯誤?晌覅s在學(xué)案中忽視了編一兩個分式的化簡的問題,因此學(xué)生在課堂上也就無法對這兩者進(jìn)行了比較。

            因此,在編寫學(xué)案時,特別是集體備課時,必需對每一個問題進(jìn)行推敲,以使學(xué)案更能發(fā)揮輔助學(xué)生復(fù)習(xí)的作用。

            那么,節(jié)課剩下的問題只能在下一節(jié)課再進(jìn)行解決了!

          《分式方程》教學(xué)反思10

            初三第一輪復(fù)習(xí)至關(guān)重要,在這一輪復(fù)習(xí)中我們教師如能精心策劃每一節(jié)課(學(xué)習(xí)目標(biāo)的確定、習(xí)題的分層設(shè)計、課堂中學(xué)生們的學(xué)習(xí)方式的選擇……),就會讓不同層次學(xué)生都能得以提升,從而提高數(shù)學(xué)平均成績。所以,在復(fù)習(xí)《一元一次方程和分式方程的應(yīng)用》這節(jié)課時,我首先仔細(xì)翻閱了七年級(上)和八年級(下)的數(shù)學(xué)書,然后從這兩本書中選擇了具有代表性的'十二道題應(yīng)用題留做了家庭作業(yè),要求學(xué)生們認(rèn)真寫在作業(yè)本上,目的在于回憶各類題的相關(guān)公式和思維方式,從而把基礎(chǔ)牢牢抓住。

            通過課前組長作業(yè)的檢查,我發(fā)現(xiàn)了很多問題,例如:行程問題單位不統(tǒng)一或設(shè)中速度無單位、利潤問題弄不清各種價(售價、標(biāo)價、定價、進(jìn)價……)的含義、不認(rèn)真審視題中的關(guān)鍵字眼等等。看到這些“意料中”的錯誤,我感覺我的前置性作業(yè)做到了“查缺”,那么課堂上如何“補漏”就成為了最大的關(guān)鍵。針對課前的檢查,我確定了課堂上學(xué)生們的學(xué)習(xí)方式:先通過組內(nèi)的“群學(xué)”解決共性問題,再通過“對學(xué)”進(jìn)行“一幫一”,最后再通過幾對“師友”間的相互點評進(jìn)行全班性的交流和共識,我認(rèn)為本節(jié)課完成了我在備課中設(shè)定的教學(xué)目標(biāo),同學(xué)們通過一系列的學(xué)習(xí)方式解決了“獨學(xué)”中遇到的困惑。

            但是本節(jié)課留給我更多是思考:如何通過“獨學(xué)、對學(xué)、群學(xué)”等學(xué)習(xí)方式高效地完成初三的各階段復(fù)習(xí)?每種方式進(jìn)入初三又該如何改進(jìn)和發(fā)展才能恰到好處地發(fā)揮作用呢?相信“方法總比困難多”,我會在今后的教學(xué)中不斷吸取他人成功的經(jīng)驗,在摸索中前進(jìn)。

          《分式方程》教學(xué)反思11

            一、設(shè)計思路:

            在學(xué)習(xí)本章之前已學(xué)過了一元一次方程的解法,對解整式方程特別是一元一次方程的解法思路比較了熟悉,在教受本節(jié)課是要改變教師講例題,學(xué)生模仿的教學(xué)模式,通過說一說,試一試,想一想,練一練等多個教學(xué)環(huán)節(jié),

            由學(xué)生預(yù)習(xí),自主學(xué)習(xí),然后再由教師考查和點撥,但是由于種種原因,最終決定給學(xué)生一個半開半閉的區(qū)間,我先作一示范,學(xué)生練習(xí)格式,接著出現(xiàn)沒有根的練習(xí)題,依然讓學(xué)生解決,由于學(xué)生不會檢驗培根的情況,所以,再詳究沒有根產(chǎn)生的原因,怎樣檢驗沒有根等問題。

            這節(jié)課的關(guān)鍵在前面的這步過渡,究竟是給學(xué)生一個完全自由的空間還是說讓學(xué)生在老師的引導(dǎo)下去完成,我們先后作了多次試驗和論證,認(rèn)為“完全開放”符合設(shè)計思路,但是學(xué)生在有限的時間內(nèi)難以完成教學(xué)任務(wù),故我們最終決定采用第二套方案。

            二、教學(xué)知識點:

            在本課的教學(xué)過程中,我認(rèn)為應(yīng)從這樣的幾個方面入手:

            1.分式方程和整式方程的區(qū)別:分清楚分式分式方程必須滿足的兩個條件,⑴方程式里必須有分式,⑵分母中含有未知數(shù)。這兩個條件是判斷一個方程是否為分式方程的.充要條件。同時,由于分母中含有未知數(shù),所以將其轉(zhuǎn)化為整式方程后求出的解就應(yīng)使每一個分式有意義,否則,這個根就不是原方程的根。正是由于分式方程與整式方程的區(qū)別,在解分式方程時必須進(jìn)行檢驗。

            2、分式方程和整式方程的聯(lián)系:分式方程通過方程兩邊都乘以最簡公分母,約去分母,就可以轉(zhuǎn)化為整式方程來解,教學(xué)時應(yīng)充分體現(xiàn)這種化歸思想的教學(xué)。

            3、解分式方程時,如果分母是多項式時,應(yīng)先寫出將分母進(jìn)行因式分解的步驟來,從而讓學(xué)生準(zhǔn)確無誤地找出最簡公分母

            4、對分式方程可能產(chǎn)生沒有根的原因,要啟發(fā)學(xué)生認(rèn)真思考和討論。

          《分式方程》教學(xué)反思12

            本節(jié)課的重點是探究分式方程的解法,我首先舉一道一元一次方程復(fù)習(xí)其解法,然后通過解一道分式方程,啟發(fā)引導(dǎo)學(xué)生參照一元一次方程的解法,由學(xué)生自己探索、歸納分式方程的解法。學(xué)生不是停留在會課本知識層面,而是站在研究者的角度深入其境,使學(xué)生的思維得到發(fā)揮。

            在教學(xué)設(shè)計上,以探究任務(wù)啟發(fā)引導(dǎo)學(xué)生自學(xué)自悟的方式,提供了學(xué)生自主探究的'舞臺,營造了鍛練思維的空間,在經(jīng)歷知識的發(fā)現(xiàn)過程中,培養(yǎng)了學(xué)生探究、歸納的能力。在課堂教學(xué)中,我時時注意營造思維氛圍,讓學(xué)生在探究中學(xué)會思考、表達(dá)。

            在本課的教學(xué)過程中,我認(rèn)為應(yīng)從這樣的幾個方面入手:

            1.分式方程和整式方程的區(qū)別:分清楚分式分式方程必須滿足的兩個條件,⑴方程式里必須有分式,⑵分母中含有未知數(shù)。這兩個條件是判斷一個方程是否為分式方程的充要條件。同時,由于分母中含有未知數(shù),所以將其轉(zhuǎn)化為整式方程后求出的解就應(yīng)使每一個分式有意義,否則,這個根就是原方程的增根。正是由于分式方程與整式方程的區(qū)別,在解分式方程時必須進(jìn)行檢驗。

            2.分式方程和整式方程的聯(lián)系:分式方程通過方程兩邊都乘以最簡公分母,約去分母,就可以轉(zhuǎn)化為整式方程來解,教學(xué)時應(yīng)充分體現(xiàn)這種化歸思想的教學(xué)。

            3.解分式方程時,如果分母是多項式時,應(yīng)先寫出將分母進(jìn)行因式分解的步驟來,從而讓學(xué)生準(zhǔn)確無誤地找出最簡公分母

            4.對分式方程可能產(chǎn)生增根的原因,要啟發(fā)學(xué)生認(rèn)真思考和討論。

            在教學(xué)方法上,我采用類比滲透思想方法進(jìn)行教學(xué),通過與一元一次方程解法相比較,啟發(fā)引導(dǎo)學(xué)生自主探究、歸納分式方程的解法。運用類比教學(xué)法具有以下三方面的優(yōu)點:

            1.通過復(fù)習(xí)一元一次方程的解法,學(xué)生在探究、歸納分式方程解法的同時進(jìn)行類比,讓學(xué)生在解分式方程時有法可循,而不會覺得無從下手。

            2.把分式方程的解法與一元一次方程的解法進(jìn)行相比較,讓學(xué)生既可以溫習(xí)舊知識,又可以加深對新知識的記憶。

            3.通過對一元一次方程和分式方程解法的類比,更能突顯分式方程解法中驗根的重要性。

          《分式方程》教學(xué)反思13

            教師想方設(shè)法為學(xué)生設(shè)計好的問題情景,同時給學(xué)生提供充分的思維空間,學(xué)生在參與發(fā)現(xiàn)和探索的過程中思維就會創(chuàng)在一個又一個的點上,這樣的教學(xué)日積月累對于培養(yǎng)學(xué)生的創(chuàng)新意識和創(chuàng)新能力是有巨大的作用的。我認(rèn)為學(xué)好數(shù)學(xué)最好的方法是在發(fā)現(xiàn)中學(xué)習(xí),在學(xué)生的再創(chuàng)造中學(xué)習(xí),并引導(dǎo)學(xué)生去學(xué)習(xí)。

            教學(xué)設(shè)計中教師要根據(jù)目的要求,內(nèi)容多少,重點難點,學(xué)生的條件,以及教學(xué)設(shè)備等合理地分配教學(xué)時間。其次,要注意節(jié)省時間,特別是在講授新知識時,要抓住重點,不能企圖一下講深講透。要安排一定的練習(xí)時間。通過練習(xí)的反饋,再采取必要的講解或補充練習(xí)。再次,要注意盡量安排全班學(xué)生的活動,如操作、練習(xí)鞏固,解應(yīng)用題等,避免由少數(shù)人代替全班學(xué)生的思維活動,使大多數(shù)學(xué)生成為旁觀者。要注意在一節(jié)課內(nèi)提高學(xué)生的平均做題率。此外,還要注意選擇有效的練習(xí)方式和收集反饋信息的方式,以便節(jié)約教學(xué)時間,并能及時發(fā)現(xiàn)問題,教學(xué)反思《分式方程教學(xué)反思》。

            班級的學(xué)生有整體的特點,當(dāng)一定存在個體差異。如果要求每一個教學(xué)目標(biāo)都人人過關(guān),實屬不智行為。效率是整體利益的`平衡結(jié)果,不能因為個別同學(xué)目標(biāo)未達(dá)成而犧牲整體的時間利益,這會造成新的教學(xué)問題。所以在集體教學(xué)時,把握大多數(shù),將整體利益平衡好,這樣的集體教學(xué)才是有效率可言的。當(dāng)然教師在教學(xué)過程還是要關(guān)注每一位學(xué)生,關(guān)注其是否在聽教師的講解分析,以及自身是否在積極思考問題。千萬不可只顧自己按照教案設(shè)計去講,而忽視學(xué)生的思維。

          《分式方程》教學(xué)反思14

            本節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了整式方程,特別是含有分母的一元一次方程的基礎(chǔ)上,進(jìn)一步認(rèn)識分式方程(未知數(shù)在分母中),并探討分式方程的解法。反思本節(jié)課的教學(xué),有以下幾點值得肯定:

            1. 教學(xué)設(shè)計充分尊重學(xué)生,符合新課程理念及“以學(xué)為主,當(dāng)堂達(dá)標(biāo)”教學(xué)模式要求。本節(jié)課在設(shè)計教學(xué)內(nèi)容及環(huán)節(jié)時,充分考慮到學(xué)生的認(rèn)知規(guī)律及已有知識經(jīng)驗。采用了“復(fù)習(xí)舊知——創(chuàng)設(shè)情境——自主學(xué)習(xí)——交流反饋——歸納提升——應(yīng)用練習(xí)”的教學(xué)模式進(jìn)行課堂教學(xué)。首先,設(shè)計了一個含有分母的一元一次方程,使學(xué)生在解決舊知的基礎(chǔ)上,回顧解一元一次方程的基本步驟及去分母的方法。接著給出兩個實際問題引發(fā)學(xué)生思考,通過建立數(shù)學(xué)模型,列出方程使學(xué)生初步感受分式方程與整式方程的區(qū)別,引導(dǎo)學(xué)生自學(xué)教材分式方程的定義。初步認(rèn)識了分式方程后,鼓勵學(xué)生自主研究解分式方程的方法,在展示反饋的過程中互相交流不同的做法,并體會化歸思想在解方程中的作用。通過檢驗發(fā)現(xiàn)有的分式方程會產(chǎn)生使原分式方程無意義的“根”,從而引發(fā)思考:這是為什么?并組織學(xué)生在小組內(nèi)交流討論,解釋原因并歸納得到解分式方程的基本思想及一般步驟。接下來進(jìn)行應(yīng)用練習(xí)。整節(jié)課的設(shè)計環(huán)節(jié)緊湊,銜接自然,能夠引發(fā)學(xué)生思考,并充分體現(xiàn)了“先學(xué)后教”“以學(xué)定教”的理念。

            2. 課堂教學(xué)中能夠以學(xué)生為主體設(shè)計問題,該放手時就放手,充分尊重學(xué)生,無論是分式定義還是解分式方程的思想方法,甚至是本節(jié)課的'難點問題——分式方程產(chǎn)生曾根的原因,都是由學(xué)生通過自主學(xué)習(xí)或者是小組交流合作完成,學(xué)生在課堂上思維活躍,積極參與本節(jié)課的教學(xué)活動,是課堂煥發(fā)出勃勃生機。

            3. 課堂教學(xué)中能夠關(guān)注學(xué)困生,為學(xué)困生的學(xué)習(xí)搭建平臺。在學(xué)生進(jìn)行自主學(xué)習(xí)和交流討論時,教師能夠走下講臺,走進(jìn)學(xué)生中間,主動關(guān)注學(xué)困生,指導(dǎo)他們解決疑難問題或提醒同組成員關(guān)注學(xué)困生的學(xué)習(xí)情況。并且,在應(yīng)用新知解決問題環(huán)節(jié),還請每組的5號同學(xué)上黑板展示,當(dāng)他們遇到困難時,允許同組其他成員上前幫忙,這就為學(xué)困生創(chuàng)設(shè)了展示自我的機會,也使他們體會到成功的喜悅。

            4. 課堂教學(xué)中注重學(xué)生各方面能力的提升及課堂教學(xué)評價的時效性。本節(jié)課前,教師就把評價標(biāo)準(zhǔn)寫在黑板上,教學(xué)過程中引導(dǎo)學(xué)生按照標(biāo)準(zhǔn)對他人的學(xué)習(xí)成果進(jìn)行科學(xué)地點評和評價。這不僅充分調(diào)動學(xué)生學(xué)習(xí)的積極性,也引領(lǐng)學(xué)生從不同層面對他人的學(xué)習(xí)進(jìn)行評價,同時也訓(xùn)練學(xué)生語言的嚴(yán)謹(jǐn)性、準(zhǔn)確性。提高學(xué)生的語言表達(dá)能力的同時,也引導(dǎo)學(xué)生學(xué)會傾聽、學(xué)會檢查、學(xué)會評價甚至學(xué)會取長補短。

            當(dāng)然,“教學(xué)是一門遺憾的藝術(shù)”,再成功的課也有瑕疵,本節(jié)課

            也不例外。由于本節(jié)課在學(xué)生交流討論、展示反饋過程中充分尊重學(xué)生,在時間上很難把握,致使應(yīng)用練習(xí)的時間有些倉促,部分學(xué)生不能按時完成所有習(xí)題。另外本節(jié)課學(xué)生參與度雖然比較高,但還有提升的空間。

            總之,本節(jié)課的教學(xué)效果較好,教學(xué)目標(biāo)達(dá)成度較高。證明我對課堂教學(xué)改革的大膽嘗試特別是對“以學(xué)為主,當(dāng)堂達(dá)標(biāo)”的研究取得了一定的進(jìn)展,今后我將繼續(xù)努力,積極探索并深入研究更科學(xué)有效地教學(xué)方法和手段,使數(shù)學(xué)課堂精彩不斷。

          《分式方程》教學(xué)反思15

            本節(jié)課在學(xué)生的認(rèn)知水平和已有的知識經(jīng)驗基礎(chǔ)上充分調(diào)動學(xué)生學(xué)習(xí)的自主性,讓學(xué)生通過觀察、類比的方式探究解分式方程的思路和方法,為學(xué)生提供了充分從事活動的機會,使學(xué)生在回顧與思考、合作和討論的過程中理解和掌握知識與技能,體驗感受過程、方法和數(shù)學(xué)思想,培養(yǎng)情感態(tài)度價值觀,從而達(dá)成教學(xué)目標(biāo)。

            本節(jié)課關(guān)于分式方程的增根的教學(xué),是通過創(chuàng)設(shè)小亮解法的情境,引導(dǎo)學(xué)生通過思考探索、閱讀理解、動手解題等手段,從而獲取知識、形成技能,發(fā)展思維,學(xué)會學(xué)習(xí),而不是由教師去講解增根的概念和產(chǎn)生原因。

            本節(jié)課小結(jié)采取了學(xué)生提出問題、教師解答問題的形式。這種方法一方面為學(xué)生搭建了展示自己的平臺,設(shè)置了獨立思考的想象空間,提供了鍛煉表達(dá)能力的機會;另一方面也為教師能及時彌補教學(xué)中存在的漏洞創(chuàng)設(shè)了條件和可能。不過,若時間允許的`話,有些問題可以由學(xué)生討論解決。

            教學(xué)環(huán)節(jié)是否可行,最終是由教學(xué)目標(biāo)是否達(dá)成來檢驗和評價的。所以本節(jié)課的某些教學(xué)環(huán)節(jié)對目標(biāo)的達(dá)成是否行之有效,還有待于在今后的教學(xué)過程中不斷實踐和完善。

          【《分式方程》教學(xué)反思】相關(guān)文章:

          分式方程教學(xué)反思02-19

          分式方程2教學(xué)反思06-11

          分式方程教學(xué)反思(15篇)11-24

          分式方程教學(xué)反思(集合15篇)02-18

          分式方程教學(xué)反思(合集15篇)01-20

          前后教學(xué)反思《前后》教學(xué)反思11-13

          《孔乙己》教學(xué)反思 孔乙己 教學(xué)反思02-09

          教學(xué)教學(xué)反思11-10

          教學(xué)反思03-05