91国產乱老熟视頻老熟女,97在线起碰视频,麻豆Av一区二区,亚洲视频国产91www.

<pre id="jdrot"></pre>

<td id="jdrot"><strong id="jdrot"></strong></td>
      <pre id="jdrot"></pre>

          當前位置:9136范文網(wǎng)>教育范文>說課稿>《三角形內(nèi)角和》說課稿

          《三角形內(nèi)角和》說課稿

          時間:2024-06-21 11:55:05 說課稿 我要投稿

          《三角形內(nèi)角和》說課稿共15篇

            作為一名教職工,常常需要準備說課稿,編寫說課稿是提高業(yè)務素質(zhì)的有效途徑。那么你有了解過說課稿嗎?下面是小編整理的《三角形內(nèi)角和》說課稿,僅供參考,歡迎大家閱讀。

          《三角形內(nèi)角和》說課稿共15篇

          《三角形內(nèi)角和》說課稿1

            一、 說教材

            三角形的內(nèi)角和是北師大版四年級下冊第二單元的內(nèi)容。三角形的內(nèi)角和是三角形的一個重要性質(zhì),學好它有助于學生理解三角形內(nèi)角之間的關(guān)系,也是進一步學習幾何的基礎。

            二、說學情

            本節(jié)課是在學生學過角的度量、三角形的特征和分類等知識的基礎上進行教學的,學生已經(jīng)具備一定的關(guān)于三角形的認識的直接經(jīng)驗,也已具備了一些相應的三角形知識和技能,這為感受、理解、抽象三角形的內(nèi)角和的規(guī)律,打下了堅實的基礎。

            因此,我確定本節(jié)課的教學目標是:

            教學目標:

            知識與技能:通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的和等于180。知道三角形兩個角的度數(shù),能求出第三個角的度數(shù)。能應用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題。

            過程與方法:

            發(fā)展學生動手操作、觀察比較和抽象概括的能力。

            情感、態(tài)度與價值觀:體驗數(shù)學活動的探索樂趣,體會研究數(shù)學問題的思想方法。

            教學重點:

            學生經(jīng)歷探究三角形內(nèi)角和的全過程并歸納概括三角形內(nèi)角和等于180。

            教學難點:

            三角形內(nèi)角和的探索與驗證,對不同探究方法的指導和學生對規(guī)律的靈活應用。

            三、說教法、學法

            整個教學將體現(xiàn)以人為本,先放后扶的教學策略。放,不是漫無目的的放,而是為學生提供足夠的探究規(guī)律的材料和時間,放手讓學生自主學習,合作探究;扶,則是根據(jù)學生的不同探究方法和出現(xiàn)的錯誤,給予恰當指導,引導學生歸納概括出規(guī)律。

            《課程標準》明確指出:要結(jié)合有關(guān)內(nèi)容的教學,引導學生進行觀察、操作、猜想,培養(yǎng)學生初步的思維能力。四年級學生經(jīng)過第一學段以及本單元的學習,已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;具備了初步的動手操作、主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點引導學生從猜測――驗證展開學習活動,讓學生感受這種重要的數(shù)學思維方式。在教學中,學生通過測量、拼折、驗證等方式確定三角形內(nèi)角的度數(shù)和。這樣,既培養(yǎng)了觀察能力和歸納概括能力,又體現(xiàn)了動手實踐、合作交流,自主探索的學習方式,同時也培養(yǎng)了探索能力和創(chuàng)新精神。

            四、說教學過程

            基于以上分析,我以猜測、驗證、結(jié)論和應用四個活動環(huán)節(jié)為主線,讓學生通過自主探究學習進行數(shù)學的思考過程,積累數(shù)學活動經(jīng)驗。

            第一, 猜測。

            通過出示一個角形,讓學生說知道三角形的知識來引出三角形的內(nèi)角的概念,讓學生自由猜測,三角形內(nèi)角和是多少?引出課題,以疑激思。

            第二,動手操作,探究新知。

            動手實踐,自主探究,是學生學習數(shù)學的重要方式,新課程的一個重要理念就是提倡學生做數(shù)學用親身體驗的方式來經(jīng)歷數(shù)學,探究數(shù)學,這要求老師首先為學生提供充分的研究材料,以及充裕的時間,保證學生能真正地試驗,操作和探索。

            這一環(huán)節(jié)我設計為以下三步:

            1、操作感知。

            組織學生通過算一算初步感知三角形的內(nèi)角和。根據(jù)學生特點,為了節(jié)約學生上課的.時間,作為預習作業(yè),我提前讓學生在家里自制鈍角、銳角、直角三角形,并測量出每個角的度數(shù),寫在三角形對應的角上,也填在書上的表格里。這時直接讓學生計算,學生匯報計算結(jié)果,不同的學生可能會有不同的結(jié)果,有可能大于180或小于180甚至等于180,只要相對合理(允許一點誤差)都給與肯定。這時可引導學生得出結(jié)論(強調(diào)在排除測量誤差的前提下):三角形的內(nèi)角和是180度。在這一過程中,學生有困惑,有疑問,而正是這些困惑激發(fā)了學生更強的探究欲望,正是這些疑問,使得合作成為學生的內(nèi)在需要。

            2、小組合作。

            針對探究過程中不同思維能力的學生,要做到因材施教。對于得出結(jié)論的學生要鼓勵他們思考新的方法,對于無法下手的學生,要啟發(fā)他們知道三角形的內(nèi)角和,我們可以把角合起來看是多少?能用什么方法將三個角合起來。在探究學習中,老師只是起一個引導者的作用,引導學生不斷地深入探究,盡可能用多種合理的方法,驗證結(jié)論。

            3、交流反饋,得出結(jié)論。

            學生完成探究活動之后,在有親身體驗的基礎上,我將選擇不同方法的代表,在展示平臺上展示自己的探究過程,并說說自己是怎樣想的。我關(guān)注的不是學生最后論證的結(jié)果,而是學生思維的過程。學生可能通過:拼一拼、折一折、畫一畫的方法,驗證得出三角形的內(nèi)角和是180度,并通過觀察對比各組所用的三角形,是不同類型的而且大小不同的,發(fā)現(xiàn)這一規(guī)律是具有普遍性的,對于任意三角形都是適用。在學生探究之后,我用課件重新演示了3種方法,讓學生有一個系統(tǒng)的知識體系。

            第三是靈活應用,拓展延伸。

            揭示規(guī)律之后,學生要掌握知識,形成技能技巧,就要通過解答實際問題的練習來鞏固內(nèi)化。根據(jù)學生能力的不同,我將練習分為以下3個層次。

            1、基礎練習。要求學生利用三角形內(nèi)角和是180度在三角形內(nèi)已知兩個角,求第三個角。由于學生空間思維能力的局限,我將先出示有具體圖形的題目,再出示文字敘述題。在這之間指導學生注意一題多解。

            2、提高練習。如已知一個直角三角形的一個角的度數(shù),求另一個角的度數(shù);已知一個等腰三角形的頂角或底角的度數(shù),求底角或頂角的度數(shù)。

            3、拓展練習。針對不同思維能力的學生,我設計的思考題是要求學生應用三角形內(nèi)角和是180的規(guī)律,求多邊形的內(nèi)角和。我的目的不僅僅是為了讓學生去求解多邊形的內(nèi)角和,更重要的是為了讓學生靈活應用知識點,培養(yǎng)學生的空間思維能力。

            這樣安排可以兼顧不同能力的學生,在保證基本教學要求的同時,盡量滿足學生的學習需要,啟發(fā)學生的思維活動。

            本節(jié)課通過這樣的設計,學生全身心投入到數(shù)學探究互動中去,學生不僅學到科學探究的方法,而體驗到探索的甘苦,領(lǐng)略成功的喜悅,學生在探索中學習,在探索中發(fā)現(xiàn),在探索中成長,最終實現(xiàn)可持續(xù)性發(fā)展。

            板書:

            三角形的內(nèi)角和

            猜測驗證結(jié)論應用

            三角形內(nèi)角和等于180。

          《三角形內(nèi)角和》說課稿2

            一、說教材

            說課內(nèi)容:人教版義務教育課程標準實驗教科書數(shù)學第八冊第85頁例5——三角形的內(nèi)角和。

            “三角形的內(nèi)角和”是三角形的一個重要性質(zhì)。它有助于學生理解三角形的三個內(nèi)角之間的關(guān)系,是掌握多邊形內(nèi)角和及解決其他實際問題的基礎,因此,掌握三角形的內(nèi)角和是180度這一規(guī)律對學生的后繼學習具有重要意義。在此之前,學生已經(jīng)掌握了三角形的概念、分類,熟悉了銳角、直角、鈍角、平角這些角的知識,也可能有部分學生已經(jīng)知道三角形的內(nèi)角和是180°,但“知其然而不知其所以然”。所以本課的重點不在于了解,而在于驗證和應用,同時發(fā)展學生的空間觀念和思維能力、解決問題的能力。

           。ㄒ唬┙虒W目標

            1、知道三角形的內(nèi)角和等于180°,能運用這一規(guī)律進行有關(guān)的計算。

            2、通過觀察、操作和實驗探索等活動,發(fā)展學生的空間觀念,培養(yǎng)學生的思維能力。

            3、經(jīng)歷三角形的內(nèi)角和等于180°這一知識的導出過程,學會學習幾何知識的方法和科學探究的方法,體驗數(shù)學學習的成功。

            (二)教學重點

            讓學生經(jīng)歷三角形的內(nèi)角和的導出過程,能運用這一規(guī)律進行有關(guān)的計算。

            (三)教學難點

            驗證三角形的內(nèi)角和等于180°。

            二、說教法和學法

            “要讓學生動手做科學,而不是用耳朵聽科學”是新課標的一個重要理念。在本課的設計上我著力通過引導學生經(jīng)歷猜想、實驗、驗證、歸納、運用、拓展等過程,牢固掌握新知。具體的策略是:

           。ㄒ唬﹦(chuàng)設問題情景,激發(fā)學生學習興趣

            通過用一個富有趣味性的動畫情境,讓學生在愉悅的對話中復習舊知,激發(fā)興趣,調(diào)動他們探索的愿望。

            (二)猜想、實驗、驗證,經(jīng)歷知識的形成過程

            為了使學生自主探究發(fā)現(xiàn)三角形的內(nèi)角和是180°,我安排了兩個環(huán)節(jié),一是猜測三角形的內(nèi)角和大約是180°,二是讓學生通過算一算、拼一拼、折一折等方法驗證這一結(jié)論。

           。ㄈ┚毩晫哟畏置,呈現(xiàn)方式多樣,夯實學生雙基。

            三.說教學程序設計

            依據(jù)以上的分析,我的教學流程大致分為四個步驟。

           。ㄒ唬﹦(chuàng)設情境,激發(fā)興趣,復習導入

            “興趣是最好的老師”,營造一個趣味盎然的課堂學習環(huán)境,能有效地吸引學生參與學習過程。課開始,通過課件演示向?qū)W生提出問題:你們認識這些三角形嗎?(課件閃現(xiàn)角)這是三角形的……?(角)每個三角形有幾個角?這一情景巧妙地重現(xiàn)知識,改變了復習的方式,再引出三角形的“內(nèi)角”及“內(nèi)角和”的概念,為學生進一步探究三角形的內(nèi)角和掃除了障礙。接著安排猜角的游戲,讓學生拿出課前準備的銳角、直角、鈍角三角形,報出其中兩個角的度數(shù),老師馬上報出第三個角的度數(shù),并做好板書記錄。在好奇心的`驅(qū)動下,學生很快可以進入憤悱狀態(tài),教師便可趁此導入新課并板書課題:三角形的內(nèi)角和

            板書:三角形∠1∠2∠3內(nèi)角和30°40°110°70°80°30°90°75°15°

           。ǘ┳灾魈骄,操作驗證

            讓學生做數(shù)學就要讓學生帶著問題,動手、動口、動腦,調(diào)動多種感官參與數(shù)學學習活動,在活動中獲得知識。教學中我重視留給學生充分進行自主探索和交流的時間和空間,讓學生經(jīng)歷猜想——驗證的過程,在操作、探索中發(fā)現(xiàn),形成結(jié)論。

            1、猜想

            首先我會向?qū)W生提出:“請你仔細觀察這個表格,你發(fā)現(xiàn)了什么?”讓學生自主發(fā)現(xiàn)三角形的內(nèi)角和是1800這一規(guī)律。

            2、驗證

            然后鼓勵他們:“你發(fā)現(xiàn)的這個結(jié)論是不是正確的呢?你能不能想辦法驗證?”恰當?shù)奶釂柗棚w了學生的思維。學生經(jīng)過獨立思考與合作交流,預計能反饋出計算、拼、折等幾種驗證的方法。教師在集中反饋時必須向?qū)W生明確以下幾點:

            (1)用計算的方法,可能會因為測量有誤差而導致計算的結(jié)果有誤差。完成板書。

            三角形∠1∠2∠3內(nèi)角和30°40°110°180°70°80°30°180°90°75°15°180°

            (2)用拼一拼的方法:要注意為每個內(nèi)角注上編號再拼,防止搞錯,同時借助課件加以說明。

            (3)用折一折的方法:要注意第一步折的折痕要和底邊平行,而且是三角形的中位線。并用課件演示。

            3、總結(jié)概括結(jié)論并板書:三角形的內(nèi)角和是180°,然后指導學生看書質(zhì)疑,并追問:“如果知道三角形的其中兩個角的度數(shù),怎樣求第三個角度數(shù)?”以強化結(jié)論的運用。

           。ㄈ╈柟踢\用,夯實雙基

            為了使學生更好地鞏固和應用這一結(jié)論,我設計了以下的題組:(課件展示)

            1、猜一猜

            猜一猜小動物背后藏著的角的度數(shù)嗎?

            你知道這個游戲的秘密嗎?

            這一題是用圖示的方法,直接口算出三角形的第3個角的度數(shù)。

            2、書本第85頁的做一做

            在一個三角形中,∠1=140°,∠3=25°,求∠2的度數(shù)。

            第二題是用文字的呈現(xiàn)方式,讓學生計算出三角形的第三個角的度數(shù)。這道題我板書在黑板上,目的是突出解題的規(guī)范。

            3、判斷、改錯

            說明利用三角形內(nèi)角和可以檢測三角形的角的量度結(jié)果。

            4、書本第88頁的第9題

            這一題是解決特殊三角形的角的計算問題。

            5、書本第88頁的第10題

            第5題是運用“三角形的內(nèi)角和是180°”這一結(jié)論解決生活中的實際問題。

            這一題組注意結(jié)合學生的認知規(guī)律,具有較強的針對性和層次性,注意到呈現(xiàn)方式的多樣性,讓學生從“會”過渡到“熟”,從“熟”過渡到“活”。

            (四)總結(jié)反饋,拓展延伸

            課末,我會讓學生結(jié)合板書,回顧本節(jié)課所學的知識,引導學生對從練習中反饋出來的一些易錯、易混的知識加以辨析、強調(diào),進一步加深學生對新學知識與技能的理解與掌握。

            最后再出示兩道拓展性練習題:

            1、拓展延伸

            幫角找朋友:每組卡片中,哪三個角可以組成三角形?

            2、思考題:

            根據(jù)三角形的內(nèi)角和是180°,你能求出下面圖形的內(nèi)角和嗎?

            引導學生通過解決這些拓展性的練習,滲透數(shù)學的化歸思想,再一次強化對學習數(shù)學的方法的認識。

            通過設計多層次的練習,放緩了新知的坡度,既有基本練習,鞏固練習,也有發(fā)展性練習,努力體現(xiàn)不同層次的學生達到不同的教學目標。同時注意改變練習的呈現(xiàn)方式,使學生在輕松愉悅的氣氛中學會新知,形成技能。

            板書設計:三角形的內(nèi)角和

          《三角形內(nèi)角和》說課稿3

            一,說教材

            (一)教材的地位和作用

            《三角形內(nèi)角和》一課是人教版義務教育課程標準實驗教材四年級下冊第五單元的內(nèi)容,是在學生學習了《三角形的特性》以及《三角形三邊關(guān)系》,《三角形的分類》之后進行的,在此之后則是《圖形的拼組》,它是三角形的一個重要特征,也是掌握多邊形內(nèi)角和及解決其他實際問題的基礎,因此,學習,掌握三角形的內(nèi)角和是180°這一規(guī)律具有重要意義。

            (二)教學目標

            基于以上對教材的分析以及對教學現(xiàn)狀的思考,我從知識與技能,教學過程與方法,情感態(tài)度價值觀三方面擬定了本節(jié)課的教學目標:

            1。通過量一量;算一算;拼一拼折一折的小組活動的方法,探索發(fā)現(xiàn)驗證三角形內(nèi)角和等于180°,并能應用這一知識解決一些簡單問題。

            2。通過把三角形的內(nèi)角和轉(zhuǎn)化為平角進行探究實驗,滲透轉(zhuǎn)化;的數(shù)學思想。

            3。通過數(shù)學活動使學生獲得成功的體驗,增強自信心。培養(yǎng)學生的創(chuàng)新意識,探索精神和實踐能力。

            (三)教學重,難點

            因為學生已經(jīng)掌握了三角形的概念,分類,熟悉了鈍角,銳角,平角這些角的知識。對于三角形的內(nèi)角和是多少度,學生并不陌生,也有提前預習的習慣,學生幾乎都能回答出三角形的內(nèi)角和是180°。在整個過程中學生要了解的是內(nèi)角的概念,如何驗證得出三角形的內(nèi)角和是180°。因此本節(jié)課我提出的教學的重點是:驗證三角形的內(nèi)角和是180°。

            二,說教法,學法

            本節(jié)課主要是通過教師的精心引導和點撥,學生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內(nèi)角和是180°。

            因為《課程標準》明確指出要結(jié)合有關(guān)內(nèi)容的教學,引導學生進行觀察,操作,猜想,培養(yǎng)學生初步的思維能力。四年級學生經(jīng)過第一學段以及本單元的學習,已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;具備了初步的動手操作,主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點引導學生從猜測――驗證展開學習活動,讓學生感受這種重要的數(shù)學思維方式。

            三,說教學過程

            我以引入,猜測,證實,深化和應用五個活動環(huán)節(jié)為主線,讓學生通過自主探究學習進行數(shù)學的思考過程,積累數(shù)學活動經(jīng)驗。

            引入

            呈現(xiàn)情境:出示多個已學的平面圖形,讓學生認識什么是內(nèi)角;。( 把圖形中相鄰兩邊的夾角稱為內(nèi)角) 長方形有幾個內(nèi)角 (四個)它的內(nèi)角有什么特點 (都是直角)這四個內(nèi)角的和是多少 (360°)三角形有幾個內(nèi)角呢 從而引入課題。

            【設計意圖】讓學生整體感知三角形內(nèi)角和的知識,這樣的教學, 將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中, 拓展了三角形內(nèi)角和的數(shù)學知識背景, 滲透數(shù)學知識之間的.聯(lián)系, 有效地避免了新知識的橫空出現(xiàn)

            猜測

            提出問題:長方形內(nèi)角和是360°,那么三角形內(nèi)角和是多少呢

            【設計意圖】引導學生提出合理猜測:三角形的內(nèi)角和是180°。

            (三)驗證

           。1)量:請學生每人畫一個自己喜歡的三角形,接著用量角器量一量,然后把這三個內(nèi)角的度數(shù)加起來算一算,看看得出的三角形的內(nèi)角和是多少度

           。2)撕―拼:利用平角是180°這一特點,啟發(fā)學生能否也把三角形的三個內(nèi)角撕下來拼在一起,成為一個平角 請學生同桌合作,從學具中選出一個三角形,撕下來拼一拼。

           。3)折—拼:把三角形的三個內(nèi)角都向內(nèi)折,把這三個內(nèi)角拼組成一個平角,一個平角是180°,所以得出三角形的內(nèi)角和是180°。

            (4)畫:根據(jù)長方形的內(nèi)角和來驗證三角形內(nèi)角和是180°。

            一個長方形有4個直角,每個直角90°,那么長方形的內(nèi)角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內(nèi)角和就是180°。從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180°。

            【設計意圖】利用已經(jīng)學過的知識構(gòu)建新的數(shù)學知識, 這不僅有助于學生理解新的知識, 而且是一種非常重要的學習方法。在探索三角形內(nèi)角和規(guī)律的教學中,注意引導學生將三角形內(nèi)角和與平角,長方形四個內(nèi)角的和等知識聯(lián)系

            起來, 并使學生在新舊知識的連接點和新知識的生長點上把握好他們之間的內(nèi)在聯(lián)系。在整個探索過程中學生積極思考并大膽發(fā)言, 他們的創(chuàng)造性思維得到了充分發(fā)揮。

            深化

            質(zhì)疑: 大小不同的三角形, 它們的內(nèi)角和會是一樣嗎

            觀察指著黑板上兩個大小不同但三個角對應相等的三角形并說明原因,三角形變大了, 但角的大小沒有變。)

            結(jié)論: 角的兩條邊長了, 但角的大小不變。因為角的大小與邊的長短無關(guān)。

            實驗: 教師先在黑板上固定小棒, 然后用活動角與小棒組成一個三角形, 教師手拿活動角的頂點處, 往下壓, 形成一個新的三角形, 活動角在變大, 而另外兩個角在變小。這樣多次變化, 活動角越來越大, 而另外兩個角越來越小。最后, 當活動角的兩條邊與小棒重合時。

            結(jié)論:活動角就是一個平角180°, 另外兩個角都是0°。

            【設計意圖】小學生由于年齡小, 容易受圖形或物體的外在形式的影響。教師主要是引導學生與角的有關(guān)知識聯(lián)系起來,通過讓學生觀察利用角的大小與邊的長短無關(guān)的舊知識來理解說明。

            對于利用精巧的小教具的演示, 讓學生通過觀察,交流,想象, 充分感受三角形三個角之間的聯(lián)系和變化, 感悟三角形內(nèi)角和不變的原因。

            (五)應用

            1;A練習:書本練習十四的習題9,求出三角形各個角的度數(shù)。

            2。變式練習:一個三角形可能有兩個直角嗎 一個三角形可能有兩個鈍角嗎 你能用今天所學的知識說明嗎3。(1)將兩個完全一樣的直角三角形拼成一個大三角形, 這個大三角形的內(nèi)角和是多少

           。2) 將一個大三角形分成兩個小三角形, 這兩個小三角形的內(nèi)角和分別是多少

            4。智力大挑戰(zhàn): 你能求出下面圖形的內(nèi)角和嗎 書本練習十四的習題

            【設計意圖】習題是溝通知識聯(lián)系的有效手段。在本節(jié)課的四個層次的練習中, 能充分注意溝通知識之間的內(nèi)在聯(lián)系, 使學生從整體上把握知識的來龍去脈和縱橫聯(lián)系,逐步形成對知識的整體認知, 構(gòu)建自己的認知結(jié)構(gòu), 從而發(fā)展思維, 提高綜合運用知識解決問題的能力。

            第一題將三角形內(nèi)角和知識與三角形特征結(jié)合起來,引導學生綜合運用內(nèi)角和知識和直角三角形,等邊三角形等圖形特征求三角形內(nèi)角的度數(shù)。

            第二題將三角形內(nèi)角和知識與三角形的分類知識結(jié)合起來,引導學生運用三角形內(nèi)角和的知識去解釋直角三角形,鈍角三角形中角的特征, 較好地溝通了知識之間的聯(lián)系。

            第三題通過兩個三角形的分與合的過程,使學生感受此過程中三角內(nèi)角的 變化情況, 進一步理解三角形內(nèi)角和的知識。

            第四題是對三角形內(nèi)角和知識的進一步拓展, 引導學生進一步研究多邊形的內(nèi)角和。教學中, 學生能把這些多邊形分成幾個三角形, 將多邊形內(nèi)角和與三角形內(nèi)角和聯(lián)系起來,并逐步發(fā)現(xiàn)多邊形內(nèi)角和的規(guī)律, 以此促進學生對多邊形內(nèi)角和知識的整體構(gòu)建。能充分注意溝通知識之間的內(nèi)在聯(lián)系, 使學生從整體上把握知識的來龍去脈和縱橫聯(lián)系,逐步形成對知識的整體認知, 構(gòu)建自己的認知結(jié)構(gòu), 從而發(fā)展思維, 提高綜合運用知識解決問題的能力。

            第一題將三角形內(nèi)角和知識與三角形特征結(jié)合起來,引導學生綜合運用內(nèi)角和知識和直角三角形,等邊三角形等圖形特征求三角形內(nèi)角的度數(shù)。

            第二題將三角形內(nèi)角和知識與三角形的分類知識結(jié)合起來,引導學生運用三角形內(nèi)角和的知識去解釋直角三角形,鈍角三角形中角的特征, 較好地溝通了知識之間的聯(lián)系。

            第三題通過兩個三角形的分與合的過程,使學生感受此過程中三角內(nèi)角的 變化情況, 進一步理解三角形內(nèi)角和的知識。

            第四題是對三角形內(nèi)角和知識的進一步拓展, 引導學生進一步研究多邊形的內(nèi)角和。教學中, 學生能把這些多邊形分成幾個三角形, 將多邊形內(nèi)角和與三角形內(nèi)角和聯(lián)系起來,并逐步發(fā)現(xiàn)多邊形內(nèi)角和的規(guī)律, 以此促進學生對多邊形內(nèi)角和知識的整體構(gòu)建。

          《三角形內(nèi)角和》說課稿4

            大家好!

            今天我說課的題目是《三角形的內(nèi)角》,我將從如下方面作出說明。

            一、教材分析

           。ㄒ唬┙虒W內(nèi)容的地位

            本節(jié)課是在研究了三角形的有關(guān)概念和學生在對 “三角形的內(nèi)角和等于1800 ”有感性認識的基礎上,對該定理進行推理論證。它是進一步研究三角形及其它圖形的重要基礎,更是研究 多邊形問題轉(zhuǎn)化的關(guān)鍵點;此外,在它的證明中第一次引入了輔助線,而輔助線又是解決幾何問題的一種重要工具,因此本節(jié)是本章的一個重點。

            (二)教學重點、難點:

            三角形內(nèi)角和等于180度,是三角形的一條重要性質(zhì),有著廣泛的應用。雖然學生在小學已經(jīng)知道這一結(jié)論,但沒有從理論的角度進行推理論證,因此三角形內(nèi)角和等于180度的證明及應用是本節(jié)課的重點。

            另外,由于學生還沒有正 式學習幾何證明,而三角形內(nèi)角和等于180度的證明難度又較大,因此證明三角形內(nèi)角和等于180度也是本節(jié)課的難點。

            突破難點的關(guān)鍵:讓學生通過動手實踐獲得感性認識,將實物圖形抽象轉(zhuǎn)化為幾何圖形得出所需輔助線。

            二.教學目標

            基于以上分析和數(shù)學課程標準的要求,我制定了本節(jié)課的教學目標,下面我從以下三個方面進行說明。

           。ㄒ唬┲R與技能目標:

            會用平行線的性質(zhì)與平角的定義證明三角形的內(nèi)角和等于1800,能用三角形內(nèi)角和等于180度進行角度計算和簡單推理,并初步學會利用輔助線解決問題,體會轉(zhuǎn)化思想在解決問題中的應用。

           。ǘ┻^程與方法目標:

            經(jīng)歷拼圖試驗、合作交流、推理論證的過程,體現(xiàn)在“做中學”,發(fā)展學生的合 情推理能力和邏輯思維能力。

            (三)情感、態(tài)度價值觀目標:

            通過操作、交流、探究、表述、推理等活動培養(yǎng)學生的合作精神,體會數(shù)學知識內(nèi)在的聯(lián)系與嚴謹性,鼓勵學生大膽質(zhì)疑,敢于提出不同見解,培養(yǎng)學生良好的學習習慣。

            三、學情分析

            七年級學生的特點是模仿力強,喜歡動手,思維活躍,但思維往往依賴于直觀具體的形象,而學生在小學已通過量、拼、折等實驗的方法得出了三角形內(nèi)角和等于180度這一結(jié)論,只是沒有從理論的角度去研究它,學生現(xiàn)在已具備了簡單說理的能力,同時已學習了平行線的性質(zhì)和判定及平角的定義,這就為學生自主探究,動手實驗,討論交流、嘗試證明做好了準備。

            四、教學方法與學法指導:

            根據(jù)新課程標準的要求,學習活動應體現(xiàn)學生身心發(fā)展特點,應有利于引導學生主動探索和發(fā)現(xiàn),因此,我采用了動手操作— 觀察實驗—猜想論證的探究式教學方法,整個探究學習的過程充滿了師生之間,生生之間的交流和互動,體 現(xiàn)了教師是教學活動的組織者、引導者、合作 者,學生才是學習的主體。并教給學生通過動手實驗、觀察思考、抽象概括從而獲得知識的學習方法,培養(yǎng)他們利用舊知識獲取新知識的能力。

            五.教學活動程序:(設計為六個環(huán)節(jié):)

            我結(jié)合七年級學生的年齡特點,采用了“1.情景激趣 引出課題”的`環(huán)節(jié)引入課題,這樣可以激發(fā)學生學習興趣和求知欲,為探索新知識創(chuàng)造一個最佳的心理和認知環(huán)境。讓學生說明三角形內(nèi)角和是180度,是本節(jié)課的重點、難點,為此我設計了“2.自主探索 動手實驗 ”“3.討論交流 嘗試證明”以下兩個環(huán)節(jié)。 定理的掌握必須要有訓練作為依托,因此我設計了“4.應用新知 鞏固提高。為了培養(yǎng)學生學習數(shù)學的興趣,在競爭中體驗成功的快樂。我設計了“5. ‘漁技’大比拼”這4道習題既含蓋了方程的思想又包括了整體的思想,還讓學生提前感受到了反證法的方法,有利于學生掌握重要的數(shù)學思想方法;仡櫴谷擞洃浬羁蹋此即偃诉M步。在“6.暢談體會 課外延伸 ”這一環(huán)節(jié)我選擇從三個方面,讓學生進行 回顧反思和作業(yè)補充。我認為學生要從一堂課中得到收獲不僅僅是知識上的,更重要的是讓他們通過這種方式,獲取比知 識本身更重要的東西,那就是數(shù)學方法,數(shù)學能力以及對數(shù)學的積極情感。

            六.設計說明與教學反思

            本節(jié)課的設計從學生已有的知識經(jīng)驗出發(fā),遵循學生的認知規(guī)律,將實物拼圖與說理論證有機結(jié)合,在動手操作,合情推理的基礎上進行嚴密的推理論證,使學生對知識的認識從感性逐步上升到理性。以問題為載體,在探究解決問題策略的過程中學會知識、感悟方法、訓練思維、發(fā)展能力,練習的設計起點低、范圍廣、有梯度,以滿足不同程度學生的需要。樹立大數(shù)學觀 ,把課堂探究 活動延伸到課外,在課與課之間,新舊知識之間,數(shù)學與生活之間搭建橋梁,為學生長遠的發(fā)展奠基。

            本節(jié)課的教學在一種輕松愉快的氛圍中完成,大部分學生能參與活動中,突出了重點 ,突破了難點。完成了教學任務。取得了較好的教學效果。練習除注重基礎外 并進行了延伸。拓寬了學生思維的空間。美中不足的是,還有少部分學習基礎較差的學生可能沒有在參與活動中去思考,收獲不大。

            新課程的教學評價對老師和學生都提出了新的要求 :因此整個教學過程中我對學生的如下方面作出了多元化的關(guān)注:1、關(guān)注學生探索結(jié)論、分析思路和方法的過程。2、關(guān)注學生說理的能力和水平。3、關(guān)注學生參與教學活動的程度。以期待人人都能學有 所得,不同的學生在課堂上得到不同的發(fā)展。

            以上是我對這節(jié)課的初淺認識,希望得能到各位專家、各位老師的指導,謝謝大家!

          《三角形內(nèi)角和》說課稿5

            今天我說課的內(nèi)容是人教版九年義務教育小學數(shù)學四年級下冊第五單元第67頁的《三角形的內(nèi)角和》。根據(jù)xxx教授的授課七步法,即說教材,說學情,說目標,說模式,說方法,說設計,說板書,我將進行本課的說課。

            一、說教材

            “三角形的內(nèi)角和”是新課標人教版四年級下冊第五單元第三節(jié)的內(nèi)容。本節(jié)課是在學生學過角的度量、三角形的特征和分類等知識的基礎上進行教學的,“三角形的內(nèi)角和”是三角形的一個重要性質(zhì),學好它有助于學生理解三角形內(nèi)角之間的關(guān)系,也是進一步學習幾何的基礎。

            仔細分析教材的知識結(jié)構(gòu),它是分成3個部分來呈現(xiàn)的。第一部分是讓學生通過量一量、算一算,初步感知三角形的內(nèi)角和是180°;第二部分是通過拼角的實驗來探究并歸納三角形內(nèi)角和的規(guī)律,第三部分是運用規(guī)律、解決問題。教材這樣編排由發(fā)現(xiàn)問題,到驗證問題,再到運用規(guī)律,充分體現(xiàn)了知識結(jié)構(gòu)的有序性和強烈的數(shù)學建模思想,既符合四年級學生的認知規(guī)律,又突出了本課教學的重點。

            二、說學情

           。、通過前面的學習,學生已經(jīng)掌握了三角形的一些基礎知識,會用工具量角、畫角,具備了探索三角形內(nèi)角和的知識與基礎技能。

           。、學生的生活經(jīng)驗是可利用的教學資源。我在課前了解到,已經(jīng)有不少學生知道了三角形內(nèi)角和是180度,但卻不知道怎樣才能得出這個結(jié)論,因此學生在這節(jié)課上的主要目標是驗證三角形的內(nèi)角和是180度。

            三、說目標

            根據(jù)小學數(shù)學教學大綱對四年級學生的具體要求,結(jié)合教材特點及學生年齡特征,將本節(jié)課的目標制定為以下幾點:

            認知技能:學生動手操作,在猜想后通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)"三角形內(nèi)角和等于180度"的規(guī)律。

            數(shù)學思考:在操作實驗中,讓學生感受圖形的轉(zhuǎn)化過程及數(shù)學建模思想,初步培養(yǎng)學生的空間思維觀念。

            解決問題:在運用知識解決問題的過程中,感受所學知識的重要性,初步培養(yǎng)學生的應用意識。

            情感態(tài)度:通過各種實驗活動,激發(fā)學習興趣,體驗學習成功感,并在教學中,感受生活與數(shù)學的密切聯(lián)系。

            將運用各種實驗方法探究三角形內(nèi)角和為180度的'過程并掌握規(guī)律,運用規(guī)律解決實際問題確定為本節(jié)課的教學重點。而同時學生難以理解不易掌握的探究規(guī)律的全過程則是本節(jié)課的教學難點。

            四、說模式

            “三角形的內(nèi)角和”一課,知識與技能目標并不難,我認為本節(jié)課更重要的是通過自主探索與合作交流使學生經(jīng)歷知識的形成過程,領(lǐng)悟轉(zhuǎn)化思想在解決問題中的應用,以及在探索過程中,培養(yǎng)學生實事求是、敢于質(zhì)疑的科學態(tài)度,同時合作交流中,開拓思維、提升能力;谝陨侠砟睿竟(jié)課,我準備引導學生采用自主探究、猜想驗證、合作探究的學習模式。體現(xiàn)“以學生的發(fā)展為本”這一教育理念。

            五、說方法

            本節(jié)課主要是通過教師的精心引導和點撥,學生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內(nèi)角和是180度。

            因為《課程標準》明確指出:“要結(jié)合有關(guān)內(nèi)容的教學,引導學生進行觀察,操作,猜想,培養(yǎng)學生初步的思維能力”。四年級學生經(jīng)過第一學段以及本單元的學習,已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;具備了初步的動手操作,主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點引導學生從“猜測――驗證”展開學習活動,讓學生感受這種重要的數(shù)學思維方式。

            六、說設計

            根據(jù)我對教材的把握和對學情的了解,設計了4個環(huán)節(jié)展開教學。

            一、創(chuàng)設情境,發(fā)現(xiàn)問題

            小游戲:猜一猜藏在信封后面的是什么三角形。

            師:我們在猜三角形的時候,看到一個直角,就能斷定它一定是直角三角形;看到一個鈍角,就能斷定他一定是鈍角三角形;但只看到一個銳角,就判斷不出來是哪種三角形?磥碓谝粋三角形中,只能有一個直角或一個鈍角,為什么畫不出有兩個直角或兩個鈍角的三角形呢?

            三角形的這三個角究竟存在什么奧秘呢,我們一起來研究研究。

           。▌(chuàng)設的不是生活中的情境,而是數(shù)學化的情境。有的孩子認為一個三角形中可能會有兩個鈍角,還有的提出等邊三角形中可能會有直角,這兩個問題顯現(xiàn)出學生在認知上的矛盾,學生用已經(jīng)學的三角形的特征只能解釋"不能是這樣",而不能解釋"為什么不能是這樣"。這樣引入問題恰好可以利用學生的這種認知沖突,激發(fā)學生的學習興趣,讓學生在疑問與猜想中尋找驗證的方法。)

            教學進入第二環(huán)節(jié)——引導探究

            二、動手操作,探究規(guī)律

            1.介紹內(nèi)角、內(nèi)角和,并提出猜想

            師:我們現(xiàn)在研究三角形的三個角,都是它的內(nèi)角。

            課件演示:三角形的三個內(nèi)角

            師:今天我們就來一起探究《三角形的內(nèi)角和》。猜一猜其它三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。

            2.確定研究范圍

            師:研究三角形的內(nèi)角和,是不是應該包括所有的三角形?只研究黑板上這一個行不行?那就隨便畫,挨個研究吧。(學生反對)

            請你想個辦法吧!

           。ㄍㄟ^引導學生分析,"研究哪幾類三角形,就能代表所有的三角形"這個問題,來滲透研究問題要全面,也就是完全歸納法的數(shù)學思想)

            3.建立模型,解決問題

           。ㄒ唬y量法:

           。1)學生自然想到要量出三角形每個角的度數(shù)就能夠求出三角形的內(nèi)角和,從而證明三角形的內(nèi)角和與三角形的大小和形狀沒有關(guān)系都接近180度。

           。2)教師要組織學生進行小組合作每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形)的三個內(nèi)角并計算出它們的總和是多少?

            (3)記錄小組測量結(jié)果及討論結(jié)果

            實驗名稱三角形內(nèi)角和

            實驗目的探究三角形內(nèi)角和是多少度。

            實驗材料尺子剪刀量角器銳角三角形紙片直角三角形紙片鈍角三角形紙片

            方法一三角形的形狀每個內(nèi)角的度數(shù)三個內(nèi)角的

            方法二

            我的發(fā)現(xiàn)

            (4)學生匯報量的方法,師請同學評價這種方法。

            師小結(jié):直接量的方法挺好,雖然測量有誤差,不準,但我們能知道,三角形的內(nèi)角和只能在180°左右,究竟是不是一定就是180度呢,誰還有別的方法?

           。ǘ┘羝捶

            學生匯報后師小結(jié):能想到這個方法不簡單,拼成的看起來像平角,到底是不是平角呢,我們一起來試試看。(教師和學生剪一剪、拼一拼)

            師:把三角形的三個內(nèi)角湊到了一起,拼成了一個大角,角的兩條邊是不是在一條直線上呢?看起來挺象的,但在操作的過程中難免會產(chǎn)生誤差,有時會差一點點,誰還有別的方法確定三角形的內(nèi)角和一定是180°?

            (三)折拼法

            學生匯報后師小結(jié):我們要研究三角形的內(nèi)角和,實際上就是想辦法把三角形的三個內(nèi)角湊到一起,像剪和折的方法,看三個內(nèi)角拼到一起是不是180度,都是借助我們學過的平角解決的問題。

            這三種方法都不錯,在操作的過程中,有時會有誤差,不太有說服力。想一想,你還能不能借助我們學過的哪種圖形,想辦法說明三角形的內(nèi)角和一定是180度?

           。ㄋ模┭堇[推理法

           。ń柚鷮W過的長方形,把一個長方形沿對角線分成兩個三角形。)

            師:你認為這種方法好不好?我們看看是不是這么回事。

           。ㄑ菔菊n件:兩個完全相同的三角形內(nèi)角和等于360°,一個三角形內(nèi)角和等于180°)

            師小結(jié):這種方法避免了在剪拼過程中由于操作出現(xiàn)的誤差,非常準確的說明了三角形的內(nèi)角和一定是180度。

           。▽W生通過小組合作的方式學到方法,分享經(jīng)驗,更重要的是領(lǐng)悟到科學研究問題的方法。就學生的發(fā)展而言,探究的過程比探究獲得的結(jié)論更有價值。)

            學生用的方法會非常多,但它們的思維水平是不平行的。

            直接測量法是學生利用已有的知識,測量出每個角的度數(shù),再用加法求和;

            拼角求和法,也就是間接剪拼和折拼這兩種方法,都是通過拼成一個特殊角,也就是平角來解決問題;

            而演繹推理法,即把兩個完全相同的三角形合二為一,或把長方形一分為二,成為兩個三角形,這是更深層次的思考。

            前兩種方法是不完全歸納法,能使我們確定研究的范圍只能是180度左右,而不可能是其他任意猜想的度數(shù)。最后一種方法具有演繹推理的色彩,把一個長方形沿對角線分成兩個完全相同的三角形后,因為兩個三角形的內(nèi)角和是原來長方形的四個內(nèi)角之和360度,所以一個三角形的內(nèi)角和就是360°÷2=180°,這種方法從科學證明的角度闡述了三角形的內(nèi)角和,它有嚴密性和精確性。

            本節(jié)課引導學生經(jīng)歷從直觀到抽象、思維程度從低到高的過程,感悟數(shù)學的嚴謹性。讓學生在經(jīng)歷量和拼之后,逐漸會在思維發(fā)散的過程中得到集中,集中為分的方法,最后將四邊形一分為二,五邊形一分為三,六邊形一分為四……,又會發(fā)現(xiàn)一些新的規(guī)律。】

            4.驗證猜想"三角形的內(nèi)角和是180度"

            5.進一步感受

           。1)三角形內(nèi)角和與三角形大小的關(guān)系

            教師出示一個小三角形,問學生內(nèi)角和是多少度?再出示一個大的等腰三角形,問學生它的內(nèi)角和是多少度?把這個大三角形平均分成兩份,每份內(nèi)角和是多少度?你有什么發(fā)現(xiàn)嗎?

           。2)三角形內(nèi)角和與三角形形狀的關(guān)系

           。ㄑ菔静粩嘧兓娜切。)仔細觀察,在這個過程中,什么變化了?什么沒變化?(三個角的度數(shù)都在變化,內(nèi)角和卻總是不變的)你有什么新發(fā)現(xiàn)嗎?

            如果老師把一個角一直往下拽,猜一猜會怎樣?

           。ㄍㄟ^變化的三角形和三個內(nèi)角的數(shù)據(jù)顯示,進一步感受三角形的內(nèi)角和與三角形的形狀、大小都沒有關(guān)系;當把三角形的一個角一直向下拽,這個角變成了一個180度的平角,另外兩個角變成了0度角,雖然已經(jīng)不再是三角形,也能從一個側(cè)面證明三角形的內(nèi)角和是180度,使學生感受到極限的思維方法。)

            6.解釋課前問題

            用內(nèi)角和的知識解釋課前的問題,為什么在三角形中不能有兩個直角或鈍角。

            三、拓展應用,深化創(chuàng)新

            本節(jié)課的練習由易到難,設計成三個層次。

            1、基本練習形成技能

            2、變式練習鞏固技能

            3、綜合練習發(fā)展提高技能

            介紹科學家帕斯卡(出示帕斯卡的資料)

            師:帕斯卡為科學作出了巨大的貢獻,在我們以后學習的知識中,也有很多是帕斯卡發(fā)現(xiàn)和驗證的,他12歲就發(fā)現(xiàn)三角形內(nèi)角和是180度,我們同學還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現(xiàn)。

            多邊形邊形內(nèi)角和

           。ㄔO計求多邊形的內(nèi)角和,旨在把新問題轉(zhuǎn)化歸結(jié)為求幾個三角形內(nèi)角和的問題上,滲透化歸的數(shù)學學習方法。)

            四、總結(jié)全課,全面提升

            我們用三角形內(nèi)角和的知識知道了六邊形內(nèi)角和,那么五邊形、七邊形……這些多邊形的內(nèi)角和是多少度?有沒有什么規(guī)律可循,你能用學到的知識和方法去探究問題,相信你還會有一些精彩的發(fā)現(xiàn)。

            七、說設計

            三角形的內(nèi)角和是180度。

            轉(zhuǎn)化的思想:量、撕、剪、折、拼

          《三角形內(nèi)角和》說課稿6

            一、教學目標

            課程標準這樣描述:通過觀察、操作了解三角形內(nèi)角和是180。

            分析教材內(nèi)容,在上學期的學習中學生已經(jīng)掌握了角的分類及度量的知識。在本課之前,學生又研究了三角形的特性、三邊間的關(guān)系及三角形的分類等知識。積累了一些有關(guān)三角形的知識和經(jīng)驗,形成了一定的空間觀念,可以在比較抽象的水平上進一步認識三角形,探索新知。教材中安排了學生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發(fā)現(xiàn)三角形的內(nèi)角和是180°,學好它有助于學生理解三角形的三個內(nèi)角之間的關(guān)系,也是進一步學習其他圖形內(nèi)角和的基礎,同時為初中進一步論證做好準備。

            課前我對學情進行了分析:

            1、學生在學習本課前已經(jīng)掌握了銳角、直角、鈍角、平角和周角的度數(shù),認識了三角形的基本特征及其分類,由于學生的數(shù)學知識、能力和思考問題的角度有一定的差異,因此比較容易出現(xiàn)解決問題策略的多樣化。

           。、已經(jīng)有不少學生知道了三角形內(nèi)角和是180度的結(jié)論,但是很可能都知其然不知其所以然。

            通過對課程標準的認識,以及內(nèi)容分析和學情分析,我制定了這樣的學習目標:

            1、通過量、拼、折、剪等方法探索和發(fā)現(xiàn)三角形的內(nèi)角和等于180°并會應用這一規(guī)律解決實際的問題。

            2、通過研究直角三角形進而研究銳角三角形、鈍角三角形,初步認識、理解由特殊到一般的邏輯思辨方法。

            二、評價設計

            針對這一目標的完成,我設計了一下評價方式:

            1、交流式評價:通過師生、生生對話交流,在交流中對學生進行評價。

            2、表現(xiàn)性評價:通過小組討論表現(xiàn)、學生回答問題情況,適當對學生進行點撥。

            3、操作反應評價:通過學生在研究三角形內(nèi)角和過程中的測量、簡拼、折等活動對學生進行評價

            評價題目

            1、通過3個練習題(1、做一做。2、說一說3、拼一拼、想一想)

            檢測學習目標1的掌握情況。

            2、通過小組、同桌合作、匯報,教師引導學生理解本節(jié)課所蘊含的學習方法,檢測學習目標2的掌握情況

            三、教具學具準備

            教具準備:課件、3個直角三角形,2個銳角三角形、2個鈍角三角形、一張表格

            學具準備:三角板、量角器.

            四、教學過程

            這節(jié)課的教學我通過一下四個環(huán)節(jié)完成。

            1、觀察猜測,引入新知;

            2、動手操作,探索新知;

            3、鞏固新知,拓展應用;

            4、總結(jié)評價、延伸知識。

            第一環(huán)節(jié),觀察猜測,引入新知。

            由圖形引入,讓學生指出銳角三角形,直角三角形,鈍角三角形的三個內(nèi)角,發(fā)現(xiàn)在這些三角形中最大的內(nèi)角是鈍角。問:想看鈍角三角形72變嗎?我們一起來看一看。課件演示:

           。1)鈍角變小,另外兩個角怎樣變?

           。2)鈍角變大,另外兩個角怎樣變?

           。3)鈍角變大、變大、變大再變大,還能再大嗎?發(fā)現(xiàn)再大就成平角了。平角多少度?這時把三角形三個內(nèi)角的加起來,和可能多少呢?猜測:180度。

            這只是我們的猜測,(板書:猜測)數(shù)學是要用事實說話的,這節(jié)課我們就來學習三角形的內(nèi)角和。(板書課題)這樣由三種變化的三角形引入新課,激發(fā)學生興趣的同時為后面的學習做準備

            第二環(huán)節(jié),動手操作,探索新知。

            1、直角三角形的內(nèi)角和。

            (一)直角三角形內(nèi)角和

            先讓學生觀察一副三角板的內(nèi)角和,發(fā)現(xiàn)都是180度,和猜測是一樣的,是不是所有的直角三角形內(nèi)角和都是180度呢?課件出示一些直角三角形,讓學生用手中的工具驗證你的猜測。

            四人小組合作,拿出學具袋里三個紅色的直角三角形和表格,用不同的方法驗證猜測。學生可以“量一量”,也可以“剪一剪”,還可以“折一折”。匯報時要讓學生說一說方法,同時在課件上展示。

            這個環(huán)節(jié)引導學生通過量、拼、推理等實踐操作活動,自主探究直角三角形的.內(nèi)角和是180度,體驗解決問題策略的多樣化。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結(jié)論的統(tǒng)一,從而使學生明白獲得探究問題的方法比獲得結(jié)論更為重要。

           。ǘJ角三角形、鈍角三角形的內(nèi)角和

            課件出示將銳角三角形、鈍角三角形,問:你能利用我們剛才學到的知識來研究它們的內(nèi)角和嗎?動手試一試,可以同桌討論。(學生操作,匯報,課件演示)讓學生模仿老師操作說理。由此得到了銳角三角形和鈍角三角形的內(nèi)角和也是180度。我們就可以說所有三角形的內(nèi)角和都是180度。這是三角形的一個特性。

            這樣引導學生通過直角三角形的內(nèi)角和是180度來推導出銳角和鈍角三角形的內(nèi)角和是180度,使學生初步掌握由特殊到一般的邏輯思辨方法。

            第三環(huán)節(jié)、鞏固新知,拓展應用

            用三角形的這一特性來解決一些問題

            1、基本練習

            通過做一做和說一說這兩個練習來強化學生認知。

            2、拓展練習

            拼一拼、想一想

            (1)兩個三角形拼成大三角形,說出大三角形的內(nèi)角和

           。2)一個三角形去掉一部分

            引導學生發(fā)現(xiàn),無論三角形的形狀或大小如何改變,內(nèi)角和都是180度,看來三角形的內(nèi)角和度數(shù)和他的大小形狀都無關(guān)。

            (3)再把這個三角形剪去一部分剪成一個四邊形,它的內(nèi)角和是多少度?

           。4)如果變成五邊形,你還能求出他的度數(shù)嗎?

            充分利用多媒體資源幫助學生理解、消化、新的知識,能夠靈活的運用三角形的內(nèi)角和等于180度。在此基礎上滲透數(shù)學的“轉(zhuǎn)化”思想和“分割”思想提高學生靈活運用和推理等各方面的能力。

            第四環(huán)節(jié)、總結(jié)評價、延伸知識

            通過這個環(huán)節(jié)讓學生談一談自己的收獲或感受,對本節(jié)課的知識進行拓展升華。

            五、板書設計:

            三角形的內(nèi)角和

            猜測(180度)

            驗證:測量、撕拼、折疊結(jié)論

            三角形的內(nèi)角和是180度

            我的板書簡明扼要,體現(xiàn)了本節(jié)課的重點,而且是對本節(jié)課學習方法的一個回顧。

          《三角形內(nèi)角和》說課稿7

            《三角形內(nèi)角和》說課稿

            一、說課內(nèi)容:北師大版義務教育課程標準實驗教材小學數(shù)學四年級下冊第二單元第三節(jié)----《三角形的內(nèi)角和》一課。

            二、教材分析:

            在這一環(huán)節(jié)我要闡述四方面的內(nèi)容:

            1、三角形的內(nèi)角和”是三角形的一個重要性質(zhì),是“空間與圖形”領(lǐng)域的重要內(nèi)容之一,學好它有助于學生理解三角形內(nèi)角之間的關(guān)系,教材呈現(xiàn)教學內(nèi)容時,安排了一系列的實驗操作活動。讓學生通過探索,發(fā)現(xiàn)三角形的內(nèi)角和是180度。

            2、學情分析:

            學生已經(jīng)知道了三角形的概念、分類,熟悉了各角的特點,掌握了量角的方法。也可能有部分學生知道了三角形內(nèi)角和是180°的結(jié)論。

            3、教學目標:

            A、讓學生親自動手,發(fā)現(xiàn),證實三角形的內(nèi)角和等于180度。并能初步運用這一性質(zhì)解決有一些實際問題。

            B、在經(jīng)歷“觀察、測量、撕拼、折疊”的驗證的過程中培養(yǎng)學生觀察能力,歸納能力、合作能力和創(chuàng)造能力。

            4、教學重難點:

            經(jīng)歷三角形的內(nèi)角和是180度這一知識的形成,發(fā)展和應用的全過程。

            5、教學難點:

            讓學生用不同方法驗證三角形的內(nèi)角和是180度。

            三、教學準備:

            在備課過程中,我閱讀了農(nóng)遠光盤中多位名師的教學案例來完善自己的教學設計,并收集了農(nóng)遠光盤中的多媒體課件,用課件適時播放。

            四、教法分析

            為了使教學目標得以落實,談談本課的教法和學法。新課程標準強調(diào)“教學要從學生已有的經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋與應用的過程。要激發(fā)學生的學習積極性,向?qū)W生提供充分從事數(shù)學活動的機會,讓他們積極主動地探索,解決數(shù)學問題,發(fā)現(xiàn)數(shù)學規(guī)律,獲得數(shù)學經(jīng)驗;而教師只是學生學習的組織者、引導者和合作者。我采用了趣味教學法、情境教學法、引導發(fā)現(xiàn)法、合作探究法和直觀演示法。

            五、學法分析

            在學法指導上,我把學習的主動權(quán)交給學生,引導學生通過動手、動腦、動口,積極參與知識形成的全過程。體現(xiàn)了學生動手實踐、合作交流,自主探索的學習方式。

            六:教學流程:

           。ㄒ唬┎旅约と,復習舊知。,

            興趣是最好的老師,開課我出示了一則謎語。調(diào)動學生學習的積極性。

            形狀是似座山,穩(wěn)定性能堅。三竿首尾連,學問不簡單。(打一平面圖形)

            由謎底又得出了一個對三角形你們有哪些了解的問題,喚醒學生頭腦中有關(guān)三角形的知識,同時很自然引出對“三角形內(nèi)角和”一詞的講解,為后面的探索奠定基礎。

           。ǘ﹦(chuàng)設情境,巧引新知(課件出示)

           。ㄈ炞C猜想,主動探究。

            本環(huán)節(jié)是學生獲取知識、提高能力的一個重要過程。我有目的、有意識的引導學生主動參與實踐活動、經(jīng)歷知識的形成過程。

            “你能運用已有的知識和身邊的學具想辦法驗證你的猜想嗎?”學生思考片刻后,我出示學習提綱:

            A、先獨立思考,你想怎樣驗證?

            B、再小組合作探究,運用多種方法驗證。

            C、最后匯報,展示你的驗證方法。

            課程標準指出:數(shù)學教學應該由簡單的問答式教學向獨立思考基礎上的合作學習轉(zhuǎn)變。所以,先讓他們獨立思考,形成獨特的個人見解。等有了合作的需要時,再合作探究。此時的合作,學生才會有展示自己的方法的強烈欲望,才會在不同意見的相互碰撞中產(chǎn)生富有創(chuàng)意的`思維火花。在足夠的討論之后,進入了匯報展示過程。學生可能出現(xiàn)以下幾種方法

            1.量角求和

            這個驗證方法應是全班同學都能想到的,因此,在這一環(huán)節(jié)我設計了小組活動的形式。讓小組成員在練習本上任意地畫幾個三角形進行測量并記錄。學生通過畫、量、算,最后發(fā)現(xiàn)三角形的三個內(nèi)角和都是180度。

            2.拼角求和

            通過討論,有的小組可能會想到把三個角撕開,再拼在一起,剛好拼成了一個平角,由于學生在以前學過平角是180度,很快就發(fā)現(xiàn)這三個三角形的內(nèi)角和都是180度。為了讓全班學生能夠真切,清晰地看到撕拼的過程,我利用了多媒體課件進行了演示。(課件出示)課件播放后學生一目了然,攻克了本課的一個教學重點。

            3.折角求和

            有的小組還可能想到把三個角折在一起,也剛好形成一個平角。但如何折才能夠使三個內(nèi)角剛好組成平角呢?這一驗證方法是本課教學的一個難點。

            在學生展示完驗證方法后,我又讓每位學生選擇自己喜歡的方法,再去驗證剛才的發(fā)現(xiàn)。最后歸納出結(jié)論:所有三角形的內(nèi)角和都是180度。

            (四)應用新知,解決問題。

            數(shù)學離不開練習。本節(jié)課我把圖像、動畫等引入課件,使練習的內(nèi)容具有簡單的背景與情節(jié),使學生對解題產(chǎn)生了濃厚的興趣。

            我設計了四個層次的練習:有序而多樣。

            1)基本練習:讓學生通過這一習題,掌握求未知角的一般方法。

            2)實踐運用:這一習題的設計是為了讓學生知道生活中到處都有數(shù)學,數(shù)學能解決生活實際問題,真切體驗到學的是有價值的數(shù)學。

            3)鞏固提高:使學生了解在間接條件下求未知角的方法。

            4)拓展延伸。讓學生體會到數(shù)學中輔助線的橋梁作用,在潛移默化中滲透一個重要數(shù)學思想―――轉(zhuǎn)化,為以后學習數(shù)學打下堅實的基礎。

            (五)全課小結(jié)完善新知

            1、這節(jié)課我們學到了什么知識?2、你有什么收獲?

            通過學生談這節(jié)課的收獲,對所學知識和學習方法進行系統(tǒng)的整理歸納。

           。┌鍟O計

            三角形的內(nèi)角和

            量角撕拼折角拼圖

            三角形的內(nèi)角和是180度。

            六、說效果預測:

            本課中,學生通過動手操作,測量、撕拼、折疊等實驗活動,得到的不僅是三角形內(nèi)角和的知識,也使學生學到了怎么由已知探究未知的思維方式與方法,培養(yǎng)了他們主動探索的精神。促進學生良好思維品質(zhì)的形成,達到預想的教學目的。使學生在探索中學習,在探索中發(fā)現(xiàn),在探索中成長!

          《三角形內(nèi)角和》說課稿8

            尊敬的各位評委老師好。ň瞎

            我是小學數(shù)學組幾號考生,今天我說課的題目是《三角形的內(nèi)角和》,下面開始我的說課。

            依據(jù)數(shù)學課程標準,在新課程理念的指導下,我將以教什么,怎樣教以及為什么這樣教的思路,從教材分析,教學目標,教學方法教學內(nèi)容等方面展開我的說課。

            說教材

            《三角形的內(nèi)角和》是人教版小學數(shù)學四年級下冊第五單元的內(nèi)容!叭切蔚膬(nèi)角和”是三角形的一個重要性質(zhì),學好它有助于學生理解三角形內(nèi)角之間的關(guān)系,也是進一步學習幾何的基礎。本節(jié)課是在學生學過角的度量、三角形的特征和分類等知識的基礎上進行教學的,學生已經(jīng)具備一定的關(guān)于三角形的認識的直接經(jīng)驗,也已具備了一些相應的三角形知識和技能,這為感受、理解、抽象“三角形的內(nèi)角和”的規(guī)律,打下了堅實的基礎。

            說學情

            一節(jié)成功的課,不僅在于對教材的把握,還有對學生的研究。四年級的學生正處于具體形象思維為主導的階段,他們解決問題的能力很強,但自控力稍差。因此本節(jié)課將注重引導學生動腦思考,動手實踐,打破以知識傳授為主的傳統(tǒng)數(shù)學課堂模式,采用靈活多樣的教學方法,牢牢將學生的注意力集中在課堂中。

            說教學目標

            根據(jù)新課程的要求及教材的編寫特點,充分考慮到四年級學生的思維水平,我確立如下三維教學目標:

            知識與技能目標:通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應用這一知識解決生活中簡單的實際問題。

            過程與方法目標:經(jīng)歷觀察、猜想、驗證的過程,提升自身動手操作及推理、歸納總結(jié)的能力。

            情感態(tài)度價值觀目標:在參與學習的過程中,感受數(shù)學的魅力,體驗成功的喜悅,激發(fā)學習數(shù)學的興趣。

            說教學重難點

            根據(jù)教學目標,我確定了本節(jié)課的重點和難點。重點為三角形內(nèi)角和定理,而三角形內(nèi)角和定理推理的過程為本節(jié)課的難點。

            說教法

            為了更好地突出重點,突破難點,堅持“以學生為主體,以教師為主導”的原則,根據(jù)學生的心理發(fā)展規(guī)律,我將采用啟發(fā)式教學法,引導學生利用已有的`知識經(jīng)驗去探索新知,并在探索過程中掌握本節(jié)重難點,同時輔之以多媒體教學設備,直觀地呈現(xiàn)教學內(nèi)容。

            我將引導學生采用自主探究,合作交流的方式進行學習,通過動手動腦動口來掌握本節(jié)課的教學重難點。

            說教學內(nèi)容

            為了更好地完成本節(jié)課的教學內(nèi)容,突出重點突破難點,我設計了以下幾個教學環(huán)節(jié):

            (一)創(chuàng)設情境,導入新課

            為了引入新課,調(diào)動學生的學習興趣,一開始上課我便用多媒體播放有關(guān)三角形內(nèi)角和情境視頻:在圖形的王國中,有一天,三角形家族里為“三角形內(nèi)角和的大小”爆發(fā)了一場激烈的爭吵。鈍角三角形說“我的鈍角大,我的內(nèi)角和一定比你們的內(nèi)角和大”。銳角三角形也不示弱“你雖然有一個鈍角,可是其它兩個角都很小,而我的三個角都不是很小,所以我的內(nèi)角和比你大”。直角三角形說“別爭了,我們的內(nèi)角和是一樣大的,因為三角形的內(nèi)角和是180°”。根據(jù)視頻中三角形的對話,順勢引出題目——三角形的內(nèi)角和。

            多媒體課件展示有關(guān)三角形內(nèi)角和的內(nèi)容,激發(fā)學生深厚的學習興趣和求知欲望,快速的進入學習高潮。

           。ǘ┳灾魈骄浚惺苄轮

            首先讓學生畫幾個不同類型的三角形。然后同桌互相量一量,算一算,三角形3個內(nèi)角的和各是多少度?通過測量,學生可以發(fā)現(xiàn)三角形的內(nèi)角和是180°。

            接著我會提出一個問題是不是所有的三角形的內(nèi)角和都是180°,如何進行驗證你的結(jié)論呢?接下來我會讓學生分小組討論,針對學生出現(xiàn)的問題,我給予指導,討論過后,請同學匯報,鼓勵學生用自己的語言表達,無論學生回答的全面與否,都給予積極的評價,其他同學認真傾聽后做出判斷,進行補充,提高學生的注意力。

            通過小組之間的討論,引導學生采用剪拼的方法進行驗證,先把一個三角形的三個角剪下來,再拼一拼,拼成一個平角。

            最后引導學生總結(jié)出三角形的內(nèi)角和是180°。

            以上教學活動采用讓學生主動探索、小組合作交流的學習方式,使學生充分經(jīng)歷數(shù)學學習的全過程,體現(xiàn)以生為本的教學理念。學生在全程參與中不僅掌握新知發(fā)展能力培養(yǎng)的推理能力,又鍛煉學生的語言表達能力和溝通能力,同時讓學生體驗數(shù)學與生活的緊密聯(lián)系。

            (三)鞏固練習,強化知識

            我利用小學生好勝心強的特點,以闖關(guān)的形式將課本的習題展現(xiàn)在多媒體上來鞏固本節(jié)課所學的知識,這樣設計能增加數(shù)學的趣味性,激發(fā)學生的學習興趣,并查看他們知識的掌握情況。

           。ㄋ模┱n堂小結(jié)

            我將此環(huán)節(jié)分為兩部分。第一部分是以學生為主體的知識性總結(jié),讓學生暢談本節(jié)課的感受和收獲,及時了解學生的學習情況和情感體驗。第二部分是以教師為主體的情感性總結(jié),我會對學生的表現(xiàn)予以表揚和激勵,激發(fā)學生的學習興趣,增強學習自信心。

           。ㄎ澹┎贾米鳂I(yè)

            針對學生的年齡特點,我會讓學生在課下和家長交流今天的收獲和感受,從而讓家長了解學生在校的學習情況,并促進學生與家長的溝通。

            說板書設計

            一個好的板書應該是簡潔明了整潔美觀,重難點突出,能夠?qū)W生理解本節(jié)知識有一定的強化作用,因此我的板書是這樣設計的。

            以上就是我的全部說課,感謝各位老師的聆聽。ň瞎

          《三角形內(nèi)角和》說課稿9

            ★教材與學情分析

            《三角形的內(nèi)角和》是人教版四年級下冊的教學內(nèi)容,這一內(nèi)容是三角形的一個重要性質(zhì)。它有助于學生理解三角形的三個內(nèi)角之間的關(guān)系,也是進一步學習的基礎。經(jīng)過第一學段以及本單元的學習,學生已具備了一些相應的三角形知識和技能,初步的動手操作能力、主動探究能力以及合作學習的習慣,這為感受、理解、抽象“三角形的內(nèi)角和”的概念,打下了堅實的基礎。

            ★教學目標、重難點

            以建構(gòu)主義理論以及有效教學的理念為指導,結(jié)合對教材的認識以及學生的情況分析我將本節(jié)課的教學目標定為下列幾點:

            1、知識與技能目標:通過量、剪、拼等活動發(fā)現(xiàn)、驗證三角形的內(nèi)角和是180°,并會應用這一知識解決生活中簡單的實際問題。

            2、過程與方法目標:通過對三角形的內(nèi)角和轉(zhuǎn)化為平角的探究與體驗,滲透“轉(zhuǎn)化”、“變中找不變”的數(shù)學思想。

            3、情感與態(tài)度目標:體驗成功的喜悅,激發(fā)主動學習數(shù)學的興趣。

            教學重點:經(jīng)歷“三角形的內(nèi)角和是180°”這一知識的形成、發(fā)展和應用的全過程。

            教學難點:驗證“三角形的內(nèi)角和是180°”以及對這一知識規(guī)律的靈活運用。

            學具準備:量角器、三角尺、剪刀和準備一個喜歡的三角形(可以畫在紙上,也可以剪下來)

            ★教學環(huán)節(jié)

            下面向大家重點介紹我對這節(jié)課教學環(huán)節(jié)的設計:

            建構(gòu)主義理論學習觀提倡以學生為中心,強調(diào)學習者對知識意義的主動建構(gòu)。本節(jié)課我設計采用支架式教學方法,以猜想→驗證→應用→評價四個活動環(huán)節(jié)為主線,引導學生通過自主探究學習實現(xiàn)對“三角形內(nèi)角和是180°”這一知識規(guī)律的數(shù)學理解。同時,每一個活動環(huán)節(jié)都讓學生嘗試扮演一種角色,激發(fā)他們投入課堂活動的興趣。

            一.大膽設疑,提出猜想(猜想家)

            在這節(jié)課之前,有不少學生通過各種渠道了解了三角形的內(nèi)角和是180°。因此,第一個環(huán)節(jié)我就讓學生根據(jù)已有的知識經(jīng)驗進行大膽設疑,提出猜想,做一個猜想家。

            首先,我向?qū)W生出示一個長方形,向?qū)W生講解長方形的四個內(nèi)角,從長方形的角的特征可知它的四個內(nèi)角都是直角,將這四個內(nèi)角的度數(shù)相加就算出長方形的內(nèi)角和是360°。接著,我把長方形拆成兩個三角形,讓學生指出其中一個三角形的三個內(nèi)角,設問:這個三角形的三個內(nèi)角和是多少?讓學生說說各自的看法和理由,并提出“三角形的內(nèi)角和是180°”的猜想。通過這一環(huán)節(jié),學生首先獲得對“三角形內(nèi)角和是什么”這一陳述性知識的數(shù)學理解。

            二、科學驗證,探索規(guī)律(科學家)

            有了大膽的猜想,就要進行科學的驗證,第二個角色就是扮演科學家,對剛才的猜想進行科學驗證,自主探索規(guī)律,這也就是本節(jié)課的第二個環(huán)節(jié)。

            第二個環(huán)節(jié)的活動步驟如下:

           。1)提供實驗活動需要操作的工具,如:量角器、三角尺、剪刀等,讓學生說說:“要知道三角形的'內(nèi)角和,怎樣利用好這些工具?”

           。2)明確提出操作要求:先在自己準備的三角形上作好內(nèi)角的符號,選擇合適的工具開展實驗,遇到操作困難可以與同伴商量或請老師幫助解決。

           。3)學生操作后在小組內(nèi)交流,出示交流提綱:

            A、通過實驗操作,你發(fā)現(xiàn)三角形的內(nèi)角和有什么特點?你是怎樣發(fā)現(xiàn)的?

            B、你認為三角形的內(nèi)角和與三角形的大小、形狀有關(guān)嗎?為什么?

           。4)集體交流,小結(jié)規(guī)律:

            在組織學生交流實驗的過程與成果時,我會挑選出研究不同形狀或不同大小的三角形的學生進行實驗匯報,并在學生提出疑問時進行合理的解釋與調(diào)控,最后與學生一起小結(jié)歸納出:“三角形的內(nèi)角和是180°,而且與它的大小、形狀無關(guān)”這一數(shù)學規(guī)律,從中感悟由特殊到一般的證明方法。

            建構(gòu)主義心理學認為,學習的過程是學習者用自己的觀點去解讀教材的內(nèi)容,從而在自己頭腦中建構(gòu)出一個新的概念。在第二個環(huán)節(jié),學生通過動手實驗,用自己適用的方式將“三角形內(nèi)角和是180°”這一知識規(guī)律建構(gòu)起來,也就是獲得了對“三角形內(nèi)角和是多少、為什么”這些程序性知識的數(shù)學理解。

            三、聯(lián)系生活,實踐應用(實踐家)

            俗話說的好:“熟能生巧”。數(shù)學離不開練習,要掌握知識,形成技能技巧,一定要通過練習。有效教學理論指出練習要考慮它的實效性。在這個環(huán)節(jié),我設計讓學生扮演實踐家,通過三個有層次有針對性的練習實踐把探索得出的知識應用于生活問題之中。

            第一,基本運用。即書本中的“做一做”這個練習,通過這個練習讓學生形成運用三角形內(nèi)角和的知識求出未知角度數(shù)的基本技能。我設計讓學生先嘗試獨立完成,在匯報交流時,鼓勵學生注意傾聽、領(lǐng)會同伴的解法,從而反思自己解法。

            第二,綜合運用。即書本中練習十四的第9題,這道題目的是讓學生在求特殊三角形的未知角的度數(shù)的過程中,綜合運用之前所學的各種三角形的特征與三角形內(nèi)角和的知識,對知識的運用提高了一個層次。因此做這道題時,我會先引導學生說說自己的看法,找出特殊三角形中隱藏的已知條件。我估計學生可能會混淆了等腰三角形的頂角和底角,因此在匯報交流時重點放在等腰三角形這個圖形的求解,讓學生首先明確已知的是頂角的度數(shù),因此從180°中減去頂角的度數(shù),再平分成兩份,才能得出一個底角的度數(shù)。這時,我再提出一個反例,如果知道的是底角的度數(shù),你能求出頂角是多少度嗎?以此引出練習十四的第10題。

            第三,拓展延伸。我設計了將一個大三角形拆分成兩個小三角形,其中一個三角形的內(nèi)角和是不是用180°除以2得到?然后再出示兩個三角形拼成一個大三角形,這個大三角形的內(nèi)角和是不是用180°乘2得到?以這樣的一個變式練習讓學生進一步感悟“三角形的內(nèi)角和與它的形狀、大小沒有關(guān)系”的知識規(guī)律。

            通過三個層次的練習,學生應用“三角形內(nèi)角和是180°”這個知識規(guī)律回到現(xiàn)實問題中,用自己的思維方式對各種現(xiàn)實問題進行解釋,這是學生不斷完善對三角形內(nèi)角和知識的內(nèi)涵與外延的數(shù)學理解,實現(xiàn)了對數(shù)學理解的提升。

            四、自我反思,評價延伸

            在這個環(huán)節(jié),我會讓學生自己說說:“這節(jié)課你有什么收獲?”“在扮演三個角色時,哪一個角色完成得最好,為什么?”“在今后的課堂活動中哪方面可以做得更好?”對學生的各種自我評價,同伴和老師都可以發(fā)表自己的看法,讓學生發(fā)現(xiàn)、總結(jié)開展本次課堂活動的經(jīng)驗與不足,明確今后努力的方向。

            ★教學特色

            一、滲透數(shù)學思想

            通過探究活動,學生將三個內(nèi)角和轉(zhuǎn)化為一個平角,得出三角形的內(nèi)角和是180°,滲透了“轉(zhuǎn)化”的數(shù)學思想;通過實驗小結(jié),學生發(fā)現(xiàn)無論三角形的形狀、大小怎樣變,三角形的內(nèi)角和不變,都是180°,滲透了“變中找不變”的數(shù)學思想。

            二、利用課程資源

            1、挖掘?qū)W生資源

            有效教學有時需要教師保持“無為而教”的自我克制,不過多地干擾學生的自由學習空間。在設計這節(jié)課時,我利用學生已有的知識經(jīng)驗,對三角形的內(nèi)角和進行猜想,然后通過大膽的實驗激起同伴之間的互相影響,作為教師,我更多的是為學生提供大量的課程資源,喚醒和激勵學生親自去接觸、體驗知識和規(guī)律的產(chǎn)生過程。

            2、善用教材資源

            新課標數(shù)學實驗教材倡導人人學“有用”的數(shù)學,它把原教材繁、難、雜、偏的內(nèi)容刪去。因此,我在設計練習鞏固時,不作無謂的浪費,直接使用教材中習題,作為基礎性練習和綜合性練習。考慮學生學習基礎、能力的差異,在練習的最后一層拓展性練習,我利用三角形的拆分與組合為學生提供多層次的思考,以滿足不同層次學生均發(fā)展的需要,讓人人都獲得不同程度的提高,得到成功的體驗。

          《三角形內(nèi)角和》說課稿10

            一、說教材

            1、我說課的內(nèi)容是《九年義務教育人教版》第八冊的《三角形的內(nèi)角和》。

            2、教材簡析

            三角形在平面圖形中是簡單的,也是最基本的多邊形,這部分內(nèi)容是在學生對三角形已經(jīng)有了直觀的認識,并且對三角形的特性及分類有了一定的了解的基礎上進行學習的。通過這部分內(nèi)容的學習,培養(yǎng)學生的實際操作能力、觀察能力、小組合作交流能力、語言表達能力以及抽象的思維能力,為以后學習多邊形打好基礎。

            3、教學目標

            根據(jù)教材的內(nèi)容以及學生的知識現(xiàn)狀和年齡心理特點,我制定以下教學目標。

           。1)知識目標:從實際出發(fā),通過互動學習初步感知三角形的內(nèi)角和是180度,在此基礎上,用實驗的方法加以探究。

           。2)能力目標:通過教學活動,培養(yǎng)學生動手操作、歸納推理以及抽象概括的能力。

           。3)情感目標:使學生經(jīng)歷探究的過程,體會與他人合作交流的樂趣,學會用數(shù)學的眼光去發(fā)現(xiàn)問題、解決問題。感受到數(shù)學的價值。

            4、教學重點與難點。

            《三角形內(nèi)角和》的教學是學生從直觀形象到抽象掌握的過程,即學生從感性認識到理性認識的升華,對學生發(fā)展類推的能力有著重要的作用。因此,我認為學生通過操作,自主探究三角形的內(nèi)角和是180度是本節(jié)課的重點;采用多種途徑證明三角形的內(nèi)角和等于180度是本節(jié)課的難點。

            5、教學準備

            為了更好的達到教學目標,突出重點,突破難點,我準備以下教具和學具:課件、不同類型的三角形紙片、量角器、剪刀、膠水。

            二、說教法學法

            根據(jù)新課程教材的特點和學生實際情況,教學中以直觀教學為主。運用動手觀察,分組討論等多種方法,采用現(xiàn)代化手段結(jié)合教材,讓學生在“想一想”、“做一做”、“說一說”的自主探索過程發(fā)揮學生相互之間的作用,讓學生自己動腦、動手、動口中促進思維的發(fā)展。培養(yǎng)學生的動手操作能力、語言表達能力和自學能力。

            本節(jié)課在學生學習方法的引導上盡量體現(xiàn):

           、僭诰唧w的情景中,讓學生親身經(jīng)歷發(fā)現(xiàn)問題、提出問題、解決問題的過程,體驗成功的快樂。

           、谕ㄟ^師生、生生互動,探究、合作交流,完善自己的想法,形成自己獨特的學習方法。

           、弁ㄟ^靈活、有趣和富有創(chuàng)意的練習,提高學生解決問題的.能力。

            三、學生情況分析

            學生在日常生活中接觸了很多大小不同的角,但對于三角形內(nèi)角和等于180度的知識,生活中很少接觸,顯得比較抽象,對于四年級的學生抽象思維雖然有一定的發(fā)展,但依然以形象具體思維為主,分析、綜合、歸納、概括能力較弱,有待進一步培養(yǎng)。

            四、說教學流程

            為了達到本節(jié)課的教學目標,我這樣設計教學流程:

            1、設疑導入。

            為了激起學生求知的欲望,再根據(jù)本課題的特點和四年級學生心理的特點,我采取了直接設疑導入。具體步驟如下:

            (1)讓學生匯報三角尺各個內(nèi)角的度數(shù),并計算出每個三角尺的內(nèi)角和是多少度。

           。2)提出問題:當學生答出三角尺的內(nèi)角和度數(shù)之后,我問:所有的三角形的內(nèi)角和都是180度嗎?學生討論之后引出課題。

            2、動手操作,自主探究。

            為創(chuàng)新學生的思維,張揚學生的個性,學生動手量、剪、拼等活動貫穿于整個課堂。我根據(jù)四年級學生的心理特點設計了這一環(huán)節(jié),其目的是:讓學生在活動過程中形成問題意識,從而展開想象,培養(yǎng)學生的問題意識。具體做法是:(1)先讓學生思考如何驗證三角形的內(nèi)角和是180度,然后通過討論交流得到幾種驗證方法。(2)讓學生利用量角器量出學具三角形紙片的各個內(nèi)角的度數(shù),再求出三角形的內(nèi)角和,初步感知三角形的內(nèi)角和等于180度。(3)讓學生利用剪拼的方法感知三角形的三個內(nèi)角拼在一起是一個平角,從而得到結(jié)論。

            3、鞏固新知

            本環(huán)節(jié)我設計了不同類型的習題。有操作題,計算題,畫圖題,拼角題等等。其目的是:通過這一環(huán)節(jié),讓學生掌握、理解三角形的內(nèi)角和等于180度,并把所學知識回歸于生活實踐,從而達到情感、態(tài)度、價值觀這一教學目標的實現(xiàn)。

            五、板書設計

            板書是課堂教學語言的一種表現(xiàn)形式,它具有啟發(fā)性、指導性和應用性。精巧的板書設計有“引”和“導”的功能,“引”是引學生之思,“導”是導學生之路。

          《三角形內(nèi)角和》說課稿11

          各位評委、老師大家好:

            我說課的題目是《三角形內(nèi)角和》,內(nèi)容選自人教版九年義務教育七年級下冊第七章第二節(jié)第一課時。

            一、設計理念:

            數(shù)學是人與人之間精神層面上進行的交往。課堂教學中的交往主要是教師與學生、學生與學生之間的交往。它需要運用“對話式”的學習方式,采取多種教學策略,使學生在合作、探索、交流中發(fā)展能力。新課程中對學生的情感、體驗、價值觀,以及獲取知識的渠道都有悖于傳統(tǒng)的教學模式,這正是教師在新課程中尋找新的教學方式的著眼點。

            應該說,新的教學方式將伴隨著教師對新課程的逐漸透視而形成新的路徑。要破除原有教學活動的框架,建立適應師生相互交流的教學活動體系;滿足學生的心理需求,實現(xiàn)教者與學者感情上的融洽和情感上的共鳴;給學生體驗成功的機會,把“要我學”變成“我要學”。

            我認為教師角色的轉(zhuǎn)變一定會促進學生的發(fā)展、促進教育的長足發(fā)展,在未來的教學過程里,教師要做的是:幫助學生決定適當?shù)膶W習目標,并確認和協(xié)調(diào)達到目標的最佳途徑;指導學生形成良好的學習習慣,掌握學習策略;創(chuàng)造豐富的教學情境,培養(yǎng)學生的學習興趣,充分調(diào)動學生的學習積極性;為學生提供各種便利,為學生的學習服務;建立一個接納的、支持性的、寬容的課堂氣氛;作為學習的參與者,與學生分享自己的感情和想法;和學生一道尋找真理,能夠承認自己的過失和錯誤。教學情境的營造是教師走進新課程中所面臨的挑戰(zhàn),適應新一輪基礎教育課程改革的教學情境不是文本中的約定,也不是現(xiàn)成的拿來就能用的,需要我們在教學活動的全過程中去探索、研究、發(fā)現(xiàn)、形成。

            二、教材分析與處理:

            三角形的內(nèi)角和定理揭示了組成三角形的三個角的數(shù)量關(guān)系,此外,它的證明中引入了輔助線,這些都為后繼學習奠定了基礎,三角形的內(nèi)角和定理也是幾何問題代數(shù)化的體現(xiàn)。

            三、學生分析:

            處于這個年齡階段的學生有能力自己動手,在自己的視野范圍內(nèi)因地制宜地收集、編制、改造適合自身使用,貼近生活實際的數(shù)學建模問題,他們樂于嘗試、探索、思考、交流與合作,具有分析、歸納、總結(jié)的能力,他們渴望體驗成功感和自豪感。因而老師有必要給學生充分的自由和空間,同時注意問題的開放性與可擴展性。

            四、教學目標:

            1.知識目標:在情境教學中,通過探索與交流,逐步發(fā)現(xiàn)“三角形內(nèi)角和定理”,使學生親身經(jīng)歷知識的發(fā)生過程,并能進行簡單應用。能夠探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,體會方程的思想。通過開放式命題,嘗試從不同角度尋求解決問題的方法。教學中,通過有效措施讓學生在對解決問題過程的反思中,獲得解決問題的經(jīng)驗,進行富有個性的學習。

            2.能力目標:通過拼圖實踐、問題思考、合作探索、組內(nèi)及組間交流,培養(yǎng)學生的的邏輯推理、大膽猜想、動手實踐等能力。

            3.德育目標:通過添置輔助線教學,滲透美的思想和方法教育。

            4.情感、態(tài)度、價值觀:在良好的師生關(guān)系下,建立輕松的學習氛圍,使學生樂于學數(shù)學,遇到困難不避讓,在數(shù)學活動中獲得成功的體驗,增強自信心,在合作學習中增強集體責任感。

            五、重難點的確立:

            1.重點:三角形的內(nèi)角和定理探究與證明。

            2.難點:三角形的內(nèi)角和定理的證明方法(添加輔助線)的討論

            六、教法、學法和教學手段:

            采用“問題情境-建立模型-解釋、應用與拓展”的模式展開教學。

            采用對話式、嘗試教學、問題教學、分層教學等多種教學方法,以達到教學目的。

            七、教學過程設計:

            (一)、創(chuàng)設情境,懸念引入

            一堂新課的引入是老師與學生交往活動的開始,是學生學習新知識的'心理鋪墊,是拉近師生之間的距離,破除疑難心理、乏味心理的關(guān)鍵。一個成功的引入,是讓學生感覺到他熟知的生活,可使學生迅速投入到課堂中來,對知識在最短的時間內(nèi)產(chǎn)生極大的興趣和求知欲,接下來教學活動將成為他們樂此不疲的快事了。

            具體做法:拋出問題:“學校后勤部折疊長梯(電腦顯示圖形)打開時頂端的角是多少度呢?一名學生測出了兩個梯腿與地面的成角后,立即說出了答案,你知道其中的道理嗎?”待學生思考片刻后,我因勢利導,指出學習了本節(jié)課你便能夠回答這個問題了。從而引入新課。

            (二)、探索新知

            1.動手實踐,嘗試發(fā)現(xiàn):要求學生將事先準備好的三角形紙板按線剪開,然后用剪下的∠A、∠B與完整的三角形紙板中的∠C拼圖,使三者頂點重合,問能發(fā)現(xiàn)怎樣的現(xiàn)象?有的學生會發(fā)現(xiàn),三者拼成一個平角。此時讓學生互相觀察拼圖,驗證結(jié)果。從觀察交流中,互學方法,達到生生互動。待交流充分,分小組張貼所拼圖形,教師點評,總結(jié)分類,將所拼圖形分為∠A、∠B分別在∠C同側(cè)和兩側(cè)兩種情況。對有合作精神的小組給與表揚。

            (將拼圖展示在黑板上)

            2.嘗試猜想:教師提問,從活動中你有怎樣的發(fā)現(xiàn)?采取組內(nèi)交流的方式,產(chǎn)生思維碰撞。此時我走到學生中去,對有困難的小組給與適當?shù)囊龑。之后由學生匯報組內(nèi)的發(fā)現(xiàn)。即三角形三個內(nèi)角的和等于180度。

            3.證明猜想:先幫助學生回憶命題證明的基本步驟,然后讓學生獨立完成畫圖、寫出已知、求證的步驟,其他同學補充完善。下面讓學生對照剛才的動手實踐,分小組探求證明方法。此環(huán)節(jié)應留給學生充分的思考、討論、發(fā)現(xiàn)、體驗的時間,讓學生在交流中互取所長,合作探索,找到證明的切入點,體驗成功。對有困難的學生要多加關(guān)注和指導,不放棄任何一個學生,借此增進教師與學有困難學生之間的關(guān)系,為繼續(xù)學習奠定基礎。合作探究后,匯報證明方法,注意規(guī)范證明格式。此處自然的引入輔助線的概念。但要說明,添加輔助線不是盲目的,而是為了證明某一結(jié)論,需要引用某個定義、公理、定理,但原圖形不具備直接使用它們的條件,這時就需要添輔助線創(chuàng)造條件,以達到證明的目的。

            4.學以致用,反饋練習

            (1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度數(shù)?

            解:∵∠A+∠B+∠C=180°(三角形內(nèi)角和定理)

            ∴∠B+∠C=100°在△ABC中,

            (2)已知:∠A=80°,∠B=52°,則∠C=?

            解:∵∠A+∠B+∠C=180°(三角形內(nèi)角和定理)

            又∵∠A=80°∠B=52°(已知)

            ∴∠C=48°

            (3)在△ABC中,已知∠A=80°,∠B-∠C=40°,則∠C=?

            (4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度數(shù)?

            (5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度數(shù)?

            解:設∠A=x°,則∠B=3x°,∠C=5x°

            由三角形內(nèi)角和定理得,x+3x+5x=180

            解得,x=20

            ∴∠A=20°∠B=60°∠C=100°

            (6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度數(shù)?(2)若BD是AC邊上的高,∠DBC的度數(shù)?

            第(6)題是書中例題的改用,此題由輔助線輔助課件打出,給學生以圖形由簡單到繁的直觀演示。

            通過這組練習滲透把圖形簡單化的思想,繼續(xù)滲透統(tǒng)一思想,用代數(shù)方法解決幾何問題。

            5.鞏固提高,以生為本

            (1)如圖:B、C、D在一條直線上,∠ACD=105°,且∠A=∠ACB,則∠B=——度。

            (2)如圖AD是△ABC的角平分線,且∠B=70°,∠C=25°,則∠ADB=——度,∠ADC=——度。

            本組練習是三角形內(nèi)角和定理與平角定義及角平分線等知識的綜合應用.能較好的培養(yǎng)學生的分析問題、解決問題的能力,有助于獲得一些經(jīng)驗。

            6.思維拓展,開放發(fā)散

            如圖,已知△PAD中,∠APD=120°,B、C為AD上的點,△PBC為等邊三角形。試盡可能多地找出各幾何量之間的相互關(guān)系。

            本題旨在激發(fā)學生獨立思考和創(chuàng)新意識,培養(yǎng)創(chuàng)新精神和實踐能力,發(fā)展個性思維。

            (三)、歸納總結(jié),同化順應

            1.學生談體會

            2.教師總結(jié),出示本節(jié)知識要點

            3.教師點評,對學生在課堂上的積極合作,大膽思考給與肯定,提出希望。

            (四)、作業(yè):

            1、必做題:習題3.1第10、11、12題

            2、選做題:習題3.1第13、14題

            (五)、板書設計

            三角形內(nèi)角和

            學生拼圖展示

            已知:

            求證:

            證明:

            開放題:

          《三角形內(nèi)角和》說課稿12

            一、說教材

            “三角形的內(nèi)角和”是人教版小學數(shù)學四年級下冊第五單元第3節(jié)的內(nèi)容。本節(jié)課是在學生學過角的度量、三角形的特征和分類等知識的基礎上進行教學的,學生已經(jīng)具備一定的關(guān)于三角形的認識的直接經(jīng)驗,也已具備了一些相應的三角形知識和技能,這為感受、理解、抽象“三角形的內(nèi)角和”的規(guī)律,打下了堅實的基礎。

            二、說學情

            一堂成功的課不僅要熟悉教材,還需要我們充分的了解學生的特點。

            本節(jié)課的授課對象是四年級的學生,從心理特征來說,他們對于新鮮的知識充滿著好奇心和強烈的求知欲望,無意注意仍起著主要作用,有意注意正在發(fā)展。

            從認知狀況來說,學生在此之前已經(jīng)學習了三角形有關(guān)的知識,對三角形的內(nèi)角已經(jīng)有了初步的認識,這為順利完成本節(jié)課的教學任務打下了基礎,但對于三角形內(nèi)角和都是180度的理解,學生可能會產(chǎn)生一定的困難,所以教學中應予以簡單明白,深入淺出的分析。

            三、說教學目標

            根據(jù)新課程標準,教材特點、學生實際,我確定了如下三維教學目標。

            【知識與技能】通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應用這一知識解決生活中簡單的實際問題。

            【過程與方法】經(jīng)歷觀察、猜想、驗證的過程,提升自身動手操作及推理、歸納總結(jié)的'能力。

            【情感態(tài)度與價值觀】在參與學習的過程中,感受數(shù)學的魅力,體驗成功的喜悅,激發(fā)學習數(shù)學的興趣。

            四、說教學重難點

            根據(jù)學生現(xiàn)有的知識儲備和知識點本身的難易程度,學生很難建構(gòu)知識點之間的聯(lián)系,這也確定了本節(jié)課的重點為三角形內(nèi)角和定理,而三角形內(nèi)角和定理推理的過程為本節(jié)課的難點。

            五、說教法學法

            新課程明確倡導動手實踐,自主探索、合作交流的學習方式,教師不僅是知識的傳授者,更是學生探究性、合作性學習活動的設計者,組織者和學生學習的伙伴。在教學過程中,我將采用創(chuàng)設情境,直觀演示,觀察,猜測,操作,思考,總結(jié)等方法,把學生帶進開放的,富有挑戰(zhàn)性的問題情景,讓學生通過自己學習,合作學習,和交流等活動,獲得知識與能力,掌握解決問題的方法,獲得積極的情感體驗。整個學習和探索活動,體現(xiàn)出開放性思維和多元思維并存的思維方式,教學生初步學會自主梳理知識,探索知識的方法,使他們親歷自主探究的過程。

            六、教學過程

           。ㄒ唬⿲胄抡n

            首先是導入環(huán)節(jié),我會多媒體課件播放有關(guān)三角形內(nèi)角和情境視頻:在圖形的王國中,有一天,三角形家族里為“三角形內(nèi)角和的大小”爆發(fā)了一場激烈的爭吵。鈍角三角形說“我的鈍角大,我的內(nèi)角和一定比你們的內(nèi)角和大”。銳角三角形也不示弱“你雖然有一個鈍角,可是其它兩個角都很小,而我的三個角都不是很小,所以我的內(nèi)角和比你大”。直角三角形說“別爭了,我們的內(nèi)角和是一樣大的,因為三角形的內(nèi)角和是180°”。

            根據(jù)視頻中三角形的對話,順勢引出題目——三角形的內(nèi)角和。

            設計意圖:在這個環(huán)節(jié)中,多媒體課件展示有關(guān)三角形內(nèi)角和的內(nèi)容,激發(fā)學生深厚的學習興趣和求知欲望,快速的進入學習高潮。

           。ǘ┬抡n探究

            接下里是新課探究環(huán)節(jié),在這一教學環(huán)節(jié)中,我首先讓學生畫幾個不同類型的三角形。然后同桌互相量一量,算一算,三角形3個內(nèi)角的和各是多少度?通過測量,學生可以發(fā)現(xiàn)三角形的內(nèi)角和是180°。

            接著我會提出一個問題是不是所有的三角形的內(nèi)角和都是180°,如何進行驗證你的結(jié)論呢?接下來我會讓學生分小組討論,針對學生出現(xiàn)的問題,我給予指導,討論過后,請同學匯報,鼓勵學生用自己的語言表達,無論學生回答的全面與否,都給予積極的評價,其他同學認真傾聽后做出判斷,進行補充,提高學生的注意力。

            通過小組之間的討論,引導學生采用剪拼的方法進行驗證,先把一個三角形的三個角剪下來,再拼一拼,拼成一個平角。最后引導學生總結(jié)出三角形的內(nèi)角和是180°。

            此環(huán)節(jié)通過小組合作,體現(xiàn)以生為本的教學理念。既培養(yǎng)學生的推理能力,又鍛煉學生的語言表達能力和溝通能力。

           。ㄈ╈柟烫岣

            接下來進入鞏固提高環(huán)節(jié)。本環(huán)節(jié)我依據(jù)教學目標和學生在學習中存在的問題,設計有針對性、層次分明的練習題組。讓學生在解決這些問題的過程中,進一步理解、鞏固新知,訓練思維的靈活性、敏捷性、創(chuàng)造性,使學生的創(chuàng)新精神和實踐能力得到進一步提高。

            練習題組設計如下:

            第二題把這兩個完全一樣的直角三角形拼組在一起,得到的新三角形的內(nèi)角和是多少度?

            設計意圖:通過各種形式的練習,進一步提高學生學習興趣,使學生的認知結(jié)構(gòu)更加完善。同時強化本課的教學重點,突破教學難點。

           。ㄋ模┬〗Y(jié)作業(yè)

            在小結(jié)環(huán)節(jié),我會引導學生同桌之間以“你問我答”的形式回顧本節(jié)課所學的主要內(nèi)容,這節(jié)課你都學習了哪些內(nèi)容?三角形內(nèi)角和定理的推導過程體現(xiàn)了哪種數(shù)學思想方法?

            這樣設計的目的是讓學生在回顧課堂經(jīng)歷的基礎上,以相互交流、相互啟發(fā)的方式總結(jié)自己的收獲,教師通過概括性引導提升學生對三角形的內(nèi)角和定理的認識

            在作業(yè)環(huán)節(jié),我會讓學生利用本節(jié)課所學的知識,思考一下四邊形的內(nèi)角和是多少度?

            這樣設計的意圖是學生在學習本節(jié)課內(nèi)容的基礎上,進一步對本節(jié)課的一個延伸,拓展學生的思維。

            七、板書設計

            為了讓學生對本節(jié)課的學習形成清晰的思路,同時還有利于學生系統(tǒng)性地記憶新知。我的板書設計如下。

          《三角形內(nèi)角和》說課稿13

          各位老師:

            你們好,我是來應聘XX數(shù)學老師的X號考生,我今天抽到的試講題目是《三角形的內(nèi)角和》,下面開始我的試講。

            同學們,上節(jié)課我們已經(jīng)學習了三角形的基本形狀,那么同學們一起告訴老師我們都學了什么形狀的三角形。繉,非常好,有鈍角三角形、直角三角形和銳角三角形。大家回答的很好,說明上節(jié)課掌握的很好,那今天老師想讓大家畫個特殊點的三角形,好不好?今天我請同學們在紙上畫一個有兩個直角的三角形,畫好了請舉手哦。有沒有畫好呀?沒有,大家看黑板上老師畫的,是不是和你們畫出來的一樣?為什么我們沒辦法畫出有兩個直角的三角形呢?肯定里面有秘密,大家跟著老師一起來研究一下好不好?

            大家拿出事先準備好的三角板和量角器吧,同學們,你們現(xiàn)在用量角器來測量一下每一個三角形的角的度數(shù),待會老師會進行統(tǒng)計。(轉(zhuǎn)身畫兩個三角板模型),測好了吧,下面請靠窗的同學告訴老師你的測量答案。30度60度90度,非常好,那另一個呢?45度45度和90度,非常精確,請坐,相信咱們其他同學也一定能夠測量出來。那么大家仔細觀察一下,這兩組數(shù)據(jù)有沒有什么相似點。有的同學說都有個九十度,很好,還有呢,很好!有的同學發(fā)現(xiàn)了,說這三個角加起來是180度,非常棒。也就是這兩個三角形內(nèi)角和是180度。

            可是是不是所有內(nèi)角和都是180度啊,同學們,你們自己分別畫一個不同的`銳角、鈍角、直角三角形,并且測量每個內(nèi)角度數(shù),并報給老師內(nèi)角和。好,請第一排的女生起來回答,你的三個內(nèi)角和是多少?179,180,180很好,大家知道為什么第一個不是嗎?對,是因為畢竟有誤差的存在,很棒。

            下面大家按以前的安排分成六個組,交給你們一個任務,你們討論一下,怎么來驗證我們剛剛得出的這個結(jié)論呢?給大家十分鐘時間來討論。

            好,討論結(jié)束,來,哪個組派個代表來回答一下?請,哦,你說用量角器測量,恩不錯,可是用量角器的話,有可能存在誤差對不對?那還有沒有更好的方法呢?

            老師看到很多同學都皺起了眉頭,那老師來給大家一點小提示, 我們試著把三角形的三個角剪下來拼拼看。啊,很棒我看到前排的同學把三個角拼成了一個平角,大家知道平角多少度?180。那下面,大家可以動動手,任意再畫幾個三角形,用剛剛的方法看看能不能拼成一個平角?好,大家都非常積極,通過剛剛的驗證,我們可以肯定:三角形的內(nèi)角和是180度。

            那接下來我們回到咱們剛開始上課的問題:為什么不能畫一個有兩個直角的三角形?誰愿意給大家說說?好,你舉手最快,請你來說說。嗯,很好,因為有兩個九十度的角加起來就是180度了, 不可能畫出一個三角形,太棒了。請坐。

            大家看大屏幕,這里有兩個三角形,老師給分別給大家標出了其中兩個角的度數(shù),有沒有同學告訴我剩下的度數(shù)。口s緊開動腦筋算算看。好,算好的同學大聲告訴老師,第一個是30度,很棒。第二個50度,很棒,算的非常準確,看來大家上課都非常認真。

            這堂課我們就上到這里,請大家回去完成課后習題1到3。好,下課!

          《三角形內(nèi)角和》說課稿14

          各位老師:

            下午好!我今天說課的內(nèi)容是三角形內(nèi)角和定理,選自北京市義務教育課程改革實驗教材第15冊第十三章第三節(jié),接下來我將根據(jù)我的教學設計,從教學內(nèi)容、學情情況、教學目標、教學方法與過程四個方面進行分析,不足之處請各位老師批評指正。

            一、教學內(nèi)容分析

            本節(jié)課是八年級上冊第十三章第三節(jié),其教學內(nèi)容為三角形內(nèi)角和定理及其簡單應用。它是對圖形進一步認識以及規(guī)范證明過程的重要內(nèi)容之一,《三角形內(nèi)角和定理》是在學生知道了“三角形內(nèi)角和等于180°”的前提下,通過添加適當?shù)妮o助線,用平行線的性質(zhì)及平角為180加以證明,培養(yǎng)學生邏輯推理能力,也為下一節(jié)學習三角形外角的性質(zhì)作鋪墊。本節(jié)課起著承上啟下的作用。教學重點:三角形內(nèi)角和定理的證明和簡單應用。

            二、學生情況分析

            對于三角形的內(nèi)角和定理,學生在小學階段已通過量、折、拼的方法進行了合情推理并得出了相關(guān)的推論、在小學認識三角形,通過觀察、操作,得到了三角形內(nèi)角和是180°。

            但在學生升入初中階段學習過推力證明后,必須明確推理要有依據(jù),定理必須通過邏輯證明。現(xiàn)在的學生喜歡動手實驗,操作能力較強,但對知識的歸納、概括能力以及知識的遷移能力不強。部分優(yōu)秀學生已具備良好的學習習慣,有一定分析、歸納能力。

            教學難點:探索三角形內(nèi)角和定理的的證明過程

            三、教學目標分析

            1、知識目標:掌握“三角形內(nèi)角和定理的證明和簡單應用”。能夠探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,體會方程的思想。

            2、能力目標:通過幾何畫板驗證、問題思考、合作探索、組內(nèi)及組間交流,培養(yǎng)學生的邏輯推理、大膽猜想、將未知轉(zhuǎn)化為已知等能力。

            3、情感、態(tài)度、價值觀:通過添加輔助線教學,滲透數(shù)學思想和方法教育。在數(shù)學活動中獲得成功的體驗,增強自信心,在合作學習中增強集體責任感。

            四、教學方法與過程

            本節(jié)課我們主要目的是通過添加不同的輔助線的演繹推理的方法,把三角形的3個內(nèi)角轉(zhuǎn)化為1個平角或把三角形的3個內(nèi)角轉(zhuǎn)化為兩平行線的同旁內(nèi)角證明三角形內(nèi)角和定理,使學生從中體會到不同的添加輔助線方法的實質(zhì)是相同的——把一個我們不會解的新問題,轉(zhuǎn)化為我們會解的問題,認識到添加輔助線是解決數(shù)學問題的一種常用方法。

            為了完成這個設計理念,在本節(jié)課的教學方法上采用啟發(fā)引導、合作交流的方法。學生在已有經(jīng)驗的基礎上,要在自己的思考過程中得到進步,加深對知識的理解,就必須在教師的引導下,通過同學間的互相探討、啟發(fā),把課堂上所學的內(nèi)容完全轉(zhuǎn)化為他們自己的知識。

            本節(jié)課的內(nèi)容主要分為以下六個環(huán)節(jié)分別是:

           。ㄒ唬⿵土暸f知,引入新知

            (二)合作探究,學習新知

            (三)應用練習,鞏固新知

            (四)歸納總結(jié),提升認識

            (五)隨堂檢測,夯實基礎

            (六)布置作業(yè),鞏固新知

            下面我將對這六部分進行說明

           。ㄒ唬⿵土暸f知,引入新知

            上節(jié)課我們已經(jīng)研究了三角形的三條邊之間的關(guān)系,今天我們來研究一下三角形的三個內(nèi)角有什么關(guān)系,請問,你們知道三角形的.內(nèi)角有什么關(guān)系嗎?

            學生:三角形內(nèi)角和是1800。

            你已經(jīng)已知道三角形的內(nèi)角和是1800。你還記得以前用的那些方法得到的嗎?

            學生會回憶起小學時拼、折發(fā)現(xiàn)得出三角形內(nèi)角和等于180°,這只是實驗得出的命題,不能當做定理,只有經(jīng)過嚴格的幾何證明,證明命題的正確性,才能作為幾何定理,今后,在幾何里,常采用這種方法得到新知識。首先通過幾何畫板驗證我們也能得到此結(jié)論,但是我們必須通過邏輯推理來證明結(jié)論,你知道該如何證明這個結(jié)論嗎?

           。ǘ┖献魈骄,學習新知

            首先學生回憶證明一個命題的步驟:

            ①畫圖

           、诜治雒}的題設和結(jié)論,寫出已知求證,把文字語言轉(zhuǎn)化為幾何語言。

           、鄯治、探究證明方法。

            得出已知求證

            剛才的撕紙、折紙都是把三角形的三個內(nèi)角移到一起,如果不實際移動,你有什么方法可達到同樣的效果?

            這個問題學生思考起來不是很容易們可以進一步提示學生,提示:這個結(jié)論關(guān)鍵在于這個180°,試想一下,我們之前學過哪些內(nèi)容與180°有關(guān)?

            學生:

           。1)平角為180°

           。2)兩直線平行,同旁內(nèi)角互補(180°)

            觀察圖形,我們能否轉(zhuǎn)化為已有知識來證明呢?

            學生通過觀察,可以想到,如果要得到相等的角,就必須有平行線,通過內(nèi)錯角和同位角相等來證明這一結(jié)論。教師引導,要把三角形三個內(nèi)角轉(zhuǎn)化為上述兩種角,就要在原圖形上添加一些線,這些線叫做輔助線,在平面幾何里,輔助線常畫成虛線,添輔助線是解決問題的重要思想方法。

            接下來給學生一些時間,思考如何添加輔助線。

            學生通過上圖可直接的到添加輔助線的方法。接下來請學生說出添加輔助線的方法并口述證明過程。

            進而在提問還有沒有其他的方法可以證明這一結(jié)論。

            通過全體同學的思考,可以想到還有其他兩種方法可以證明,有學生說出解題思路后,總結(jié),雖然添加輔助線的方法不同,但總體思路是相同的:

           。1)平角為180°

            (2)兩直線平行,同旁內(nèi)角互補(180°)

            這樣就得到了三角形內(nèi)角和定理:文字語言:三角形內(nèi)角和為180°

            圖形語言:

            符號語言:

            提醒學生注意三種語言的轉(zhuǎn)換

           。ㄈ⿷镁毩,鞏固新知

            練習:

            通過練習依法思考

            思考:在一個三角形中,最多有幾個鈍角?直角?銳角?

            最多有一個鈍角,最多有一個直角、最多有三個銳角

            最少有兩個銳角

            例1:已知,如圖:

            分析:一般設所求角的度數(shù)為x

            練習:

            通過例題,應用定理,規(guī)范解題格式

           。ㄋ模w納總結(jié),提升認識

            小結(jié);今天我們學習了那些內(nèi)容?

            1、三角形內(nèi)角和定理:三角形內(nèi)角和為

            2、在作解答題時,一般設所求角的度數(shù)為x

            3、在一個三角形中,最多有一個鈍角,最多有一個直角、最多有三個銳角、最少有兩個銳角

           。ㄎ澹╇S堂檢測,夯實基礎

           。┎贾米鳂I(yè),鞏固新知

            本節(jié)課,我希望通過教師引導,學生合作交流的方式,讓學生理解將不會解覺的問題轉(zhuǎn)化為已經(jīng)解決的問題的方法,落實教學目標,讓學生體會,用添加輔助線的方法解決幾何問題。

            最后,感謝各位老師的聆聽!謝謝!

          《三角形內(nèi)角和》說課稿15

            一,說教材

            (一)教材的地位和作用

            《三角形內(nèi)角和》一課是人教版義務教育課程標準實驗教材四年級下冊第五單元的內(nèi)容,是在學生學習了《三角形的特性》以及《三角形三邊關(guān)系》,《三角形的分類》之后進行的,在此之后則是《圖形的拼組》,它是三角形的一個重要特征,也是掌握多邊形內(nèi)角和及解決其他實際問題的基礎,因此,學習,掌握三角形的內(nèi)角和是180°這一規(guī)律具有重要意義.

            (二)教學目標

            基于以上對教材的分析以及對教學現(xiàn)狀的思考,我從知識與技能,教學過程與方法,情感態(tài)度價值觀三方面擬定了本節(jié)課的教學目標:

            1.通過"量一量","算一算","拼一拼","折一折"的小組活動的方法,探索發(fā)現(xiàn)驗證三角形內(nèi)角和等于180°,并能應用這一知識解決一些簡單問題.

            2.通過把三角形的內(nèi)角和轉(zhuǎn)化為平角進行探究實驗,滲透"轉(zhuǎn)化"的數(shù)學思想.

            3.通過數(shù)學活動使學生獲得成功的體驗,增強自信心.培養(yǎng)學生的創(chuàng)新意識,探索精神和實踐能力.

            (三)教學重,難點

            因為學生已經(jīng)掌握了三角形的概念,分類,熟悉了鈍角,銳角,平角這些角的知識.對于三角形的內(nèi)角和是多少度,學生并不陌生,也有提前預習的習慣,學生幾乎都能回答出三角形的內(nèi)角和是180°.在整個過程中學生要了解的是"內(nèi)角"的'概念,如何驗證得出三角形的內(nèi)角和是180°.因此本節(jié)課我提出的教學的重點是:驗證三角形的內(nèi)角和是180°.

            二,說教法,學法

            本節(jié)課主要是通過教師的精心引導和點撥,學生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內(nèi)角和是180°.

            因為《課程標準》明確指出:"要結(jié)合有關(guān)內(nèi)容的教學,引導學生進行觀察,操作,猜想,培養(yǎng)學生初步的思維能力".四年級學生經(jīng)過第一學段以及本單元的學習,已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;具備了初步的動手操作,主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段.因此,本節(jié)課,我將重點引導學生從"猜測――驗證"展開學習活動,讓學生感受這種重要的數(shù)學思維方式.

            三,說教學過程

            我以引入,猜測,證實,深化和應用五個活動環(huán)節(jié)為主線,讓學生通過自主探究學習進行數(shù)學的思考過程,積累數(shù)學活動經(jīng)驗.

            引入

            呈現(xiàn)情境:出示多個已學的平面圖形,讓學生認識什么是"內(nèi)角".( 把圖形中相鄰兩邊的夾角稱為內(nèi)角) 長方形有幾個內(nèi)角 (四個)它的內(nèi)角有什么特點 (都是直角)這四個內(nèi)角的和是多少 (360°)三角形有幾個內(nèi)角呢 從而引入課題.

            【設計意圖】讓學生整體感知三角形內(nèi)角和的知識,這樣的教學, 將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中, 拓展了三角形內(nèi)角和的數(shù)學知識背景, 滲透數(shù)學知識之間的聯(lián)系, 有效地避免了新知識的"橫空出現(xiàn)".

            猜測

            提出問題:長方形內(nèi)角和是360°,那么三角形內(nèi)角和是多少呢

            【設計意圖】引導學生提出合理猜測:三角形的內(nèi)角和是180°.

            (三)驗證

            (1)量:請學生每人畫一個自己喜歡的三角形,接著用量角器量一量,然后把這三個內(nèi)角的度數(shù)加起來算一算,看看得出的三角形的內(nèi)角和是多少度

            (2)撕―拼:利用平角是180°這一特點,啟發(fā)學生能否也把三角形的三個內(nèi)角撕下來拼在一起,成為一個平角 請學生同桌合作,從學具中選出一個三角形,撕下來拼一拼.

            (3)折-拼:把三角形的三個內(nèi)角都向內(nèi)折,把這三個內(nèi)角拼組成一個平角,一個平角是180°,所以得出三角形的內(nèi)角和是180°.

            (4)畫:根據(jù)長方形的內(nèi)角和來驗證三角形內(nèi)角和是180°.

            一個長方形有4個直角,每個直角90°,那么長方形的內(nèi)角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內(nèi)角和就是180°.從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180°.

            【設計意圖】利用已經(jīng)學過的知識構(gòu)建新的數(shù)學知識, 這不僅有助于學生理解新的知識, 而且是一種非常重要的學習方法.在探索三角形內(nèi)角和規(guī)律的教學中,注意引導學生將三角形內(nèi)角和與平角,長方形四個內(nèi)角的和等知識聯(lián)系起來, 并使學生在新舊知識的連接點和新知識的生長點上把握好他們之間的內(nèi)在聯(lián)系.在整個探索過程中, 學生積極思考并大膽發(fā)言, 他們的創(chuàng)造性思維得到了充分發(fā)揮.

            深化

            質(zhì)疑: 大小不同的三角形, 它們的內(nèi)角和會是一樣嗎

            觀察指著黑板上兩個大小不同但三個角對應相等的三角形并說明原因,三角形變大了, 但角的大小沒有變.)

            結(jié)論: 角的兩條邊長了, 但角的大小不變.因為角的大小與邊的長短無關(guān).

            實驗: 教師先在黑板上固定小棒, 然后用活動角與小棒組成一個三角形, 教師手拿活動角的頂點處, 往下壓, 形成一個新的三角形, 活動角在變大, 而另外兩個角在變小.這樣多次變化, 活動角越來越大, 而另外兩個角越來越小.最后, 當活動角的兩條邊與小棒重合時.

            結(jié)論:活動角就是一個平角180°, 另外兩個角都是0°.

            【設計意圖】小學生由于年齡小, 容易受圖形或物體的外在形式的影響.教師主要是引導學生與角的有關(guān)知識聯(lián)系起來,通過讓學生觀察利用"角的大小與邊的長短無關(guān)"的舊知識來理解說明.

            對于利用精巧的小教具的演示, 讓學生通過觀察,交流,想象, 充分感受三角形三個角之間的聯(lián)系和變化, 感悟三角形內(nèi)角和不變的原因.

            (五)應用

            1.基礎練習:書本練習十四的習題9,求出三角形各個角的度數(shù).

            2.變式練習:一個三角形可能有兩個直角嗎 一個三角形可能有兩個鈍角嗎 你能用今天所學的知識說明嗎

            3.(1)將兩個完全一樣的直角三角形拼成一個大三角形, 這個大三角形的內(nèi)角和是多少

            (2) 將一個大三角形分成兩個小三角形, 這兩個小三角形的內(nèi)角和分別是多少

            4.智力大挑戰(zhàn): 你能求出下面圖形的內(nèi)角和嗎 書本練習十四的習題

            【設計意圖】習題是溝通知識聯(lián)系的有效手段.在本節(jié)課的四個層次的練習中, 能充分注意溝通知識之間的內(nèi)在聯(lián)系, 使學生從整體上把握知識的來龍去脈和縱橫聯(lián)系,逐步形成對知識的整體認知, 構(gòu)建自己的認知結(jié)構(gòu), 從而發(fā)展思維, 提高綜合運用知識解決問題的能力.

            第一題將三角形內(nèi)角和知識與三角形特征結(jié)合起來,引導學生綜合運用內(nèi)角和知識和直角三角形,等邊三角形等圖形特征求三角形內(nèi)角的度數(shù).

            第二題將三角形內(nèi)角和知識與三角形的分類知識結(jié)合起來,引導學生運用三角形內(nèi)角和的知識去解釋直角三角形,鈍角三角形中角的特征, 較好地溝通了知識之間的聯(lián)系.

            第三題通過兩個三角形的分與合的過程,使學生感受此過程中三角內(nèi)角的 變化情況, 進一步理解三角形內(nèi)角和的知識.

            第四題是對三角形內(nèi)角和知識的進一步拓展, 引導學生進一步研究多邊形的內(nèi)角和.教學中, 學生能把這些多邊形分成幾個三角形, 將多邊形內(nèi)角和與三角形內(nèi)角和聯(lián)系起來,并逐步發(fā)現(xiàn)多邊形內(nèi)角和的規(guī)律, 以此促進學生對多邊形內(nèi)角和知識的整體構(gòu)建.

            說課板書設計:

            三角形內(nèi)角和

            引入:

            猜測:

            驗證:

            量——算

            撕——拼

            折——拼

          【《三角形內(nèi)角和》說課稿】相關(guān)文章:

          《三角形內(nèi)角和》說課稿12-06

          三角形的內(nèi)角和說課稿07-09

          《三角形內(nèi)角和》說課稿11-27

          《三角形的內(nèi)角和》說課稿范文通用03-25

          《三角形的內(nèi)角和》教案05-17

          三角形內(nèi)角和教案02-02

          《三角形的內(nèi)角和》教學反思03-03

          三角形的內(nèi)角和教學反思優(yōu)秀03-03

          三角形內(nèi)角和教案八篇05-12