91国產乱老熟视頻老熟女,97在线起碰视频,麻豆Av一区二区,亚洲视频国产91www.

<pre id="jdrot"></pre>

<td id="jdrot"><strong id="jdrot"></strong></td>
      <pre id="jdrot"></pre>

          當(dāng)前位置:9136范文網(wǎng)>教育范文>教案>等差數(shù)列教案

          等差數(shù)列教案

          時間:2024-08-31 04:04:31 教案 我要投稿

          等差數(shù)列教案

            作為一名教師,時常會需要準(zhǔn)備好教案,借助教案可以更好地組織教學(xué)活動?靵韰⒖冀贪甘窃趺磳懙陌!以下是小編收集整理的等差數(shù)列教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

          等差數(shù)列教案

          等差數(shù)列教案1

            教學(xué)目標(biāo)

            1.明確等差數(shù)列的定義.

            2.掌握等差數(shù)列的通項公式,會解決知道中的三個,求另外一個的問題

            3.培養(yǎng)學(xué)生觀察、歸納能力.

            教學(xué)重點

            1. 等差數(shù)列的概念;

            2. 等差數(shù)列的通項公式

            教學(xué)難點

            等差數(shù)列“等差”特點的理解、把握和應(yīng)用

            教學(xué)方法

            啟發(fā)式數(shù)學(xué)

            教具準(zhǔn)備

            投影片1張(內(nèi)容見下面)

            教學(xué)過程

            (I)復(fù)習(xí)回顧

            師:上兩節(jié)課我們共同學(xué)習(xí)了數(shù)列的定義及給出數(shù)列的兩種方法——通項公式和遞推公式。這兩個公式從不同的角度反映數(shù)列的特點,下面看一些例子。(放投影片)

           。á颍┲v授新課

            師:看這些數(shù)列有什么共同的特點?

            1,2,3,4,5,6; ①

            10,8,6,4,2,…; ②

           、

            生:積極思考,找上述數(shù)列共同特點。

            對于數(shù)列① (1≤n≤6); (2≤n≤6)

            對于數(shù)列② -2n(n≥1)

            (n≥2)

            對于數(shù)列③

           。╪≥1)

           。╪≥2)

            共同特點:從第2項起,第一項與它的前一項的差都等于同一個常數(shù)。

            師:也就是說,這些數(shù)列均具有相鄰兩項之差“相等”的特點。具有這種特點的數(shù)列,我們把它叫做等差數(shù)。

            一、定義:

            等差數(shù)列:一般地,如果一個數(shù)列從第2項起,每一項與空的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的`公差,通常用字母d表示。

            如:上述3個數(shù)列都是等差數(shù)列,它們的公差依次是1,-2, 。

            二、等差數(shù)列的通項公式

            師:等差數(shù)列定義是由一數(shù)列相鄰兩項之間關(guān)系而得。若一等差數(shù)列 的首項是 ,公差是d,則據(jù)其定義可得:

            若將這n-1個等式相加,則可得:

            即:

            即:

            即:

            ……

            由此可得:

            師:看來,若已知一數(shù)列為等差數(shù)列,則只要知其首項 和公差d,便可求得其通項 。

            如數(shù)列① (1≤n≤6)

            數(shù)列②: (n≥1)

            數(shù)列③:

           。╪≥1)

            由上述關(guān)系還可得:

            即:

            則: =

            如:

            三、例題講解

            例1:(1)求等差數(shù)列8,5,2…的第20項

           。2)-401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項?

            解:(1)由

            n=20,得

           。2)由

            得數(shù)列通項公式為:

            由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個數(shù)列的第100項。

            (Ⅲ)課堂練習(xí)

            生:(口答)課本P118練習(xí)3

           。〞婢毩(xí))課本P117練習(xí)1

            師:組織學(xué)生自評練習(xí)(同桌討論)

            (Ⅳ)課時小結(jié)

            師:本節(jié)主要內(nèi)容為:①等差數(shù)列定義。

            即 (n≥2)

            ②等差數(shù)列通項公式 (n≥1)

            推導(dǎo)出公式:

           。╒)課后作業(yè)

            一、課本P118習(xí)題3.2 1,2

            二、1.預(yù)習(xí)內(nèi)容:課本P116例2—P117例4

            2.預(yù)習(xí)提綱:①如何應(yīng)用等差數(shù)列的定義及通項公式解決一些相關(guān)問題?

           、诘炔顢(shù)列有哪些性質(zhì)?

            板書設(shè)計

            課題

            一、定義

            1.(n≥2)

            一、通項公式

            2.公式推導(dǎo)過程

            例題

            教學(xué)后記

          等差數(shù)列教案2

            一、等差數(shù)列

            1、定義

            注:“從第二項起”及

            “同一常數(shù)”用紅色粉筆標(biāo)注

            二、等差數(shù)列的通項公式

            (一)例題與練習(xí)

            通過練習(xí)2和3 引出兩個具體的等差數(shù)列,初步認識等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認知能力。

            (二)新課探究

            1、由引入自然的給出等差數(shù)列的概念:

            如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列, 這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):

            ① “從第二項起”滿足條件; f

            ②公差d一定是由后項減前項所得;

           、勖恳豁椗c它的前一項的差必須是同一個常數(shù)(強調(diào)“同一個常數(shù)” );

            在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達式:

            an+1—an=d (n≥1) ;h4z+0"6vG

            同時為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。

            1。 9 ,8,7,6,5,4,……;√ d=—1

            2。 0。70,0。71,0。72,0。73,0。74……;√ d=0。01

            3。 0,0,0,0,0,0,……。; √ d=0

            4。 1,2,3,2,3,4,……;×

            5。 1,0,1,0,1,……×

            其中第一個數(shù)列公差<0,>0,第三個數(shù)列公差=0

            由此強調(diào):公差可以是正數(shù)、負數(shù),也可以是0

            2、第二個重點部分為等差數(shù)列的通項公式

            在歸納等差數(shù)列通項公式中,我采用討論式的教學(xué)方法。給出等差數(shù)列的首項 ,公差d,由學(xué)生研究分組討論a4 的通項公式。通過總結(jié)a4的通項公式由學(xué)生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學(xué)生完成,通過互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識又化解了教學(xué)難點。

            若一等差數(shù)列{an }的首項是a1,公差是d,

            則據(jù)其定義可得:

            a2 — a1 =d 即: a2 =a1 +d

            a3 – a2 =d 即: a3 =a2 +d = a1 +2d

            a4 – a3 =d 即: a4 =a3 +d = a1 +3d

            ……

            猜想: a40 = a1 +39d

            進而歸納出等差數(shù)列的通項公式:

            an=a1+(n—1)d

            此時指出: 這種求通項公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴密,為了培養(yǎng)學(xué)生嚴謹?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法——————迭加法:

            a2 – a1 =d

            a3 – a2 =d

            a4 – a3 =d

            ……

            an+1 – an=d

            將這(n—1)個等式左右兩邊分別相加,就可以得到 an– a1= (n—1) d即 an= a1+(n—1) d (1)

            當(dāng)n=1時,(1)也成立,

            所以對一切n∈N﹡,上面的公式都成立

            因此它就是等差數(shù)列{an}的通項公式。

            在迭加法的證明過程中,我采用啟發(fā)式教學(xué)方法。

            利用等差數(shù)列概念啟發(fā)學(xué)生寫出n—1個等式。

            對照已歸納出的通項公式啟發(fā)學(xué)生想出將n—1個等式相加。證出通項公式。

            在這里通過該知識點引入迭加法這一數(shù)學(xué)思想,逐步達到“注重方法,凸現(xiàn)思想” 的教學(xué)要求

            接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n—1)×2 , 即an=2n—1 以此來鞏固等差數(shù)列通項公式運用

            同時要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個孤立點。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。

            (三)應(yīng)用舉例

            這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運動變化的觀點看等差數(shù)列通項公式中的a1、d、n、an這4個量之間的關(guān)系。當(dāng)其中的部分量已知時,可根據(jù)該公式求出另一部分量。

            例1 (1)求等差數(shù)列8,5,2,…的第20項;第30項;第40項

           。2)—401是不是等差數(shù)列—5,—9,—13,…的項?如果是,是第幾項?

            在第一問中我添加了計算第30項和第40項以加強鞏固等差數(shù)列通項公式;第二問實際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項公式an

            例2 在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項a1與公差d。

            在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對通項公式的鞏固

            例3 是一個實際建模問題

            建造房屋時要設(shè)計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5。8米,若樓梯設(shè)計為等高的16級臺階,問每級臺階高為多少米?

            這道題我采用啟發(fā)式和討論式相結(jié)合的'教學(xué)方法。啟發(fā)學(xué)生注意每級臺階“等高”使學(xué)生想到每級臺階離地面的高度構(gòu)成等差數(shù)列,引導(dǎo)學(xué)生將該實際問題轉(zhuǎn)化為數(shù)學(xué)模型——————等差數(shù)列:(學(xué)生討論分析,分別演板,教師評析問題。問題可能出現(xiàn)在:項數(shù)學(xué)生認為是16項,應(yīng)明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用展示實際樓梯圖以化解難點)

            設(shè)置此題的目的:

            1。加強同學(xué)們對應(yīng)用題的綜合分析能力,

            2。通過數(shù)學(xué)實際問題引出等差數(shù)列問題,激發(fā)了學(xué)生的興趣;

            3。再者通過數(shù)學(xué)實例展示了“從實際問題出發(fā)經(jīng)抽象概括建立數(shù)學(xué)模型,最后還原說明實際問題的“數(shù)學(xué)建!钡臄(shù)學(xué)思想方法

            (四)反饋練習(xí)

            1、小節(jié)后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時間內(nèi)完成)。目的:使學(xué)生熟悉通項公式,對學(xué)生進行基本技能訓(xùn)練。

            2、書上例3)梯子的最高一級寬33c,最低一級寬110c,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。

            目的:對學(xué)生加強建模思想訓(xùn)練。

            3、若數(shù)例{an} 是等差數(shù)列,若 bn = an ,(為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列

            此題是對學(xué)生進行數(shù)列問題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問題同時強化了等差數(shù)列的概念。

            (五)歸納小結(jié) (由學(xué)生總結(jié)這節(jié)課的收獲)

            1。等差數(shù)列的概念及數(shù)學(xué)表達式.

            強調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)

            2。等差數(shù)列的通項公式 an= a1+(n—1) d會知三求一

            3.用“數(shù)學(xué)建!彼枷敕椒ń鉀Q實際問題

            (六)布置作業(yè)

            必做題:課本P114 習(xí)題3。2第2,6 題

            選做題:已知等差數(shù)列{an}的首項a1= —24,從第10項開始為正數(shù),求公差d的取值范圍。(目的:通過分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求)

            五、板書設(shè)計

            在板書中突出本節(jié)重點,將強調(diào)的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標(biāo)注,同時給學(xué)生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學(xué)方法。

          等差數(shù)列教案3

            教學(xué)目的:

            1.明確等差數(shù)列的定義,掌握等差數(shù)列的通項公式。

            2.會解決知道中的三個,求另外一個的問題。

            教學(xué)重點:等差數(shù)列的概念,等差數(shù)列的通項公式。

            教學(xué)難點等差數(shù)列的性質(zhì)

            教學(xué)過程:

            一、復(fù)習(xí)引入:(課件第一頁)

            二、講解新課:

            1.等差數(shù)列:一般地,如果一個數(shù)列從第二項起,每一項與它前一項的. 差等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列,這個常數(shù)就叫做等差數(shù)列的公差(常用字母“d”表示)。

           。ㄕn件第二頁)

           、牛頳一定是由后項減前項所得,而不能用前項減后項來求;

           、疲畬τ跀(shù)列{ },若 - =d (與n無關(guān)的數(shù)或字母),n≥2,n∈n ,則此數(shù)列是等差數(shù)列,d 為公差。

            2.等差數(shù)列的通項公式: 【或 】等差數(shù)列定義是由一數(shù)列相鄰兩項之間關(guān)系而得。若一等差數(shù)列 的首項是 ,公差是d,則據(jù)其定義可得: 即: 即: 即: …… 由此歸納等差數(shù)列的通項公式可得: (課件第二頁) 第二通項公式 (課件第二頁)

            三、例題講解

            例1 ⑴求等差數(shù)列8,5,2…的第20項(課本p111) ⑵ -401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項?

            例2 在等差數(shù)列 中,已知 , ,求 , ,

            例3將一個等差數(shù)列的通項公式輸入計算器數(shù)列 中,設(shè)數(shù)列的第s項和第t項分別為 和 ,計算 的值,你能發(fā)現(xiàn)什么結(jié)論?并證明你的結(jié)論。

            小結(jié):①這就是第二通項公式的變形,②幾何特征,直線的斜率

            例4 梯子最高一級寬33cm,最低一級寬為110cm,中間還有10級,各級的寬度成等差數(shù)列,計算中間各級的寬度。(課本p112例3)

            例5 已知數(shù)列{ }的通項公式 ,其中 、 是常數(shù),那么這個數(shù)列是否一定是等差數(shù)列?若是,首項與公差分別是什么?(課本p113例4)

            分析:由等差數(shù)列的定義,要判定 是不是等差數(shù)列,只要看 (n≥2)是不是一個與n無關(guān)的常數(shù)。

            注:①若p=0,則{ }是公差為0的等差數(shù)列,即為常數(shù)列q,q,q,… ②若p≠0, 則{ }是關(guān)于n的一次式,從圖象上看,表示數(shù)列的各點均在一次函數(shù)y=px+q的圖象上,一次項的系數(shù)是公差,直線在y軸上的截距為q. ③數(shù)列{ }為等差數(shù)列的充要條件是其通項 =pn+q (p、q是常數(shù))。稱其為第3通項公式④判斷數(shù)列是否是等差數(shù)列的方法是否滿足3個通項公式中的一個。

            例6.成等差數(shù)列的四個數(shù)的和為26,第二項與第三項之積為40,求這四個數(shù).

            四、練習(xí):

            1.(1)求等差數(shù)列3,7,11,……的第4項與第10項.

           。2)求等差數(shù)列10,8,6,……的第20項.

            (3)100是不是等差數(shù)列2,9,16,……的項?如果是,是第幾項?如果不是,說明理由.

           。4)-20是不是等差數(shù)列0,-3 ,-7,……的項?如果是,是第幾項?如果不是,說明理由.

            2.在等差數(shù)列{ }中,

           。1)已知 =10, =19,求 與d;

            五、課后作業(yè):

            習(xí)題3.2 1(2),(4) 2.(2), 3, 4, 5, 6 . 8. 9.

          等差數(shù)列教案4

            教學(xué)目標(biāo)

            1.理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式,并能運用通項公式解決簡單的問題.

           。1)了解公差的概念,明確一個數(shù)列是等差數(shù)列的限定條件,能根據(jù)定義判斷一個數(shù)列是等差數(shù)列,了解等差中項的概念;

           。2)正確認識使用等差數(shù)列的各種表示法,能靈活運用通項公式求等差數(shù)列的首項、公差、項數(shù)、指定的項;

           。3)能通過通項公式與圖像認識等差數(shù)列的性質(zhì),能用圖像與通項公式的關(guān)系解決某些問題.

            2.通過等差數(shù)列的圖像的應(yīng)用,進一步滲透數(shù)形結(jié)合思想、函數(shù)思想;通過等差數(shù)列通項公式的運用,滲透方程思想.

            3.通過等差數(shù)列概念的歸納概括,培養(yǎng)學(xué)生的觀察、分析資料的能力,積極思維,追求新知的創(chuàng)新意識;通過對等差數(shù)列的研究,使學(xué)生明確等差數(shù)列與一般數(shù)列的內(nèi)在聯(lián)系,從而滲透特殊與一般的辯證唯物主義觀點.

            關(guān)于等差數(shù)列的教學(xué)建議

           。1)知識結(jié)構(gòu)

            (2)重點、難點分析

            ①教學(xué)重點是等差數(shù)列的定義和對通項公式的認識與應(yīng)用,等差數(shù)列是特殊的數(shù)列,定義恰恰是其特殊性、也是本質(zhì)屬性的準(zhǔn)確反映和高度概括,準(zhǔn)確把握定義是正確認識等差數(shù)列,解決相關(guān)問題的前提條件.通項公式是項與項數(shù)的函數(shù)關(guān)系,是研究一個數(shù)列的重要工具,等差數(shù)列的通項公式的結(jié)構(gòu)與一次函數(shù)的解析式密切相關(guān),通過函數(shù)圖象研究數(shù)列性質(zhì)成為可能.

           、谕ㄟ^不完全歸納法得出等差數(shù)列的通項公式,所以是教學(xué)中的一個難點;另外, 出現(xiàn)在一個等式中,運用方程的思想,已知三個量可以求出第四個量.由于一個公式中字母較多,學(xué)生應(yīng)用時會有一定的困難,通項公式的靈活運用是教學(xué)的有一難點.

           。3)教法建議

            ①本節(jié)內(nèi)容分為兩課時,一節(jié)為等差數(shù)列的定義與表示法,一節(jié)為等差數(shù)列通項公式的應(yīng)用.

           、诘炔顢(shù)列定義的引出可先給出幾組等差數(shù)列,讓學(xué)生觀察、比較,概括共同規(guī)律,再由學(xué)生嘗試說出等差數(shù)列的定義,對程度差的學(xué)生可以提示定義的結(jié)構(gòu):“……的數(shù)列叫做等差數(shù)列”,由學(xué)生把限定條件一一列舉出來,為等比數(shù)列的定義作準(zhǔn)備.如果學(xué)生給出的定義不準(zhǔn)確,可讓學(xué)生研究討論,用符合學(xué)生的定義但不是等差數(shù)列的數(shù)列作為反例,再由學(xué)生修改其定義,逐步完善定義.

           、鄣炔顢(shù)列的定義歸納出來后,由學(xué)生舉一些等差數(shù)列的例子,以此讓學(xué)生思考確定一個等差數(shù)列的條件.

           、苡蓪W(xué)生根據(jù)一般數(shù)列的表示法嘗試表示等差數(shù)列,前提條件是已知數(shù)列的首項與公差.明確指出其圖像是一條直線上的一些點,根據(jù)圖像觀察項隨項數(shù)的變化規(guī)律;再看通項公式,項 可看作項數(shù) 的一次型( )函數(shù),這與其圖像的形狀相對應(yīng).

           、萦懈F等差數(shù)列的末項與通項是有區(qū)別的,數(shù)列的通項公式 是數(shù)列第 項 與項數(shù) 之間的函數(shù)關(guān)系式,有窮等差數(shù)列的項數(shù)未必是 ,即其末項未必是該數(shù)列的第 項,在教學(xué)中一定要強調(diào)這一點.

           、薜炔顢(shù)列前 項和的公式推導(dǎo)離不開等差數(shù)列的性質(zhì),所以在本節(jié)課應(yīng)補充一些重要的性質(zhì);另外可讓學(xué)生研究等差數(shù)列的子數(shù)列,有規(guī)律的子數(shù)列會引起學(xué)生的興趣.

           、叩炔顢(shù)列是現(xiàn)實生活中廣泛存在的數(shù)列的數(shù)學(xué)模型,如教材中的例題、習(xí)題等,還可讓學(xué)生去搜集,然后彼此交流,提出相關(guān)問題,自己嘗試解決,為學(xué)生提供相互學(xué)習(xí)的機會,創(chuàng)設(shè)相互研討的課堂環(huán)境.

            等差數(shù)列通項公式的教學(xué)設(shè)計示例

            教學(xué)目標(biāo)

            1.通過教與學(xué)的互動,使學(xué)生加深對等差數(shù)列通項公式的認識,能參與編擬一些簡單的問題,并解決這些問題;

            2.利用通項公式求等差數(shù)列的項、項數(shù)、公差、首項,使學(xué)生進一步體會方程思想;

            3.通過參與編題解題,激發(fā)學(xué)生學(xué)習(xí)的興趣.

            教學(xué)重點,難點

            教學(xué)重點是通項公式的認識;教學(xué)難點是對公式的靈活運用.

            教學(xué)用具

            實物投影儀,多媒體軟件,電腦.

            教學(xué)方法

            研探式.

            教學(xué)過程()

            一.復(fù)習(xí)提問

            前一節(jié)課我們學(xué)習(xí)了等差數(shù)列的概念、表示法,請同學(xué)們回憶等差數(shù)列的定義,其表示法都有哪些?

            等差數(shù)列的概念是從相鄰兩項的關(guān)系加以定義的,這個關(guān)系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進一步的'理解與應(yīng)用.

            二.主體設(shè)計

            通項公式 反映了項 與項數(shù) 之間的函數(shù)關(guān)系,當(dāng)?shù)炔顢?shù)列的首項與公差確定后,數(shù)列的每一項便確定了,可以求指定的項(即已知 求 ).找學(xué)生試舉一例如:“已知等差數(shù)列 中,首項 ,公差 ,求 .”這是通項公式的簡單應(yīng)用,由學(xué)生解答后,要求每個學(xué)生出一些運用等差數(shù)列通項公式的題目,包括正用、反用與變用,簡單、復(fù)雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.

            1.方程思想的運用

           。1)已知等差數(shù)列 中,首項 ,公差 ,則-397是該數(shù)列的第______項.

            (2)已知等差數(shù)列 中,首項 , 則公差

           。3)已知等差數(shù)列 中,公差 , 則首項

            這一類問題先由學(xué)生解決,之后教師點評,四個量 , 在一個等式中,運用方程的思想方法,已知其中三個量的值,可以求得第四個量.

            2.基本量方法的使用

           。1)已知等差數(shù)列 中, ,求 的值.

           。2)已知等差數(shù)列 中, , 求 .

            若學(xué)生的題目只有這兩種類型,教師可以小結(jié)(最好請出題者、解題者概括):因為已知條件可以化為關(guān)于 和 的二元方程組,所以這些等差數(shù)列是確定的,由 和 寫出通項公式,便可歸結(jié)為前一類問題.解決這類問題只需把兩個條件(等式)化為關(guān)于 和 的二元方程組,以求得 和 , 和 稱作基本量.

            教師提出新的問題,已知等差數(shù)列的一個條件(等式),能否確定一個等差數(shù)列?學(xué)生回答后,教師再啟發(fā),由這一個條件可得到關(guān)于 和 的二元方程,這是一個 和 的制約關(guān)系,從這個關(guān)系可以得到什么結(jié)論?舉例說明(例題可由學(xué)生或教師給出,視具體情況而定).

            如:已知等差數(shù)列 中, …

            由條件可得 即 ,可知 ,這是比較顯然的,與之相關(guān)的還能有什么結(jié)論?若學(xué)生答不出可提示,一定得某一項的值么?能否與兩項有關(guān)?多項有關(guān)?由學(xué)生發(fā)現(xiàn)規(guī)律,完善問題

            (3)已知等差數(shù)列 中, 求 ; ; ; ;….

            類似的還有

           。4)已知等差數(shù)列 中, 求 的值.

            以上屬于對數(shù)列的項進行定量的研究,有無定性的判斷?引出

            3.研究等差數(shù)列的單調(diào)性,考察 隨項數(shù) 的變化規(guī)律.著重考慮 的情況. 此時 是 的一次函數(shù),其單調(diào)性取決于 的符號,由學(xué)生敘述結(jié)果.這個結(jié)果與考察相鄰兩項的差所得結(jié)果是一致的.

            4.研究項的符號

            這是為研究等差數(shù)列前 項和的最值所做的準(zhǔn)備工作.可配備的題目如

           。1)已知數(shù)列 的通項公式為 ,問數(shù)列從第幾項開始小于0?

            (2)等差數(shù)列 從第________項起以后每項均為負數(shù).

            三.小結(jié)

            1. 用方程思想認識等差數(shù)列通項公式;

            2. 用函數(shù)思想解決等差數(shù)列問題.

          等差數(shù)列教案5

            教學(xué)目標(biāo):

            1.知識與技能目標(biāo):理解等差數(shù)列的概念,了解等差數(shù)列的通項公式的推導(dǎo)過程及思想,掌握并會用等差數(shù)列的通項公式,初步引入“數(shù)學(xué)建!钡乃枷敕椒ú⒛苓\用。

            2.過程與方法目標(biāo):培養(yǎng)學(xué)生觀察分析、猜想歸納、應(yīng)用公式的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,滲透函數(shù)、方程的思想。

            3.情感態(tài)度與價值觀目標(biāo):通過對等差數(shù)列的研究培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求知的精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習(xí)慣。

            教學(xué)重點:

            等差數(shù)列的概念及通項公式。

            教學(xué)難點:

            (1)理解等差數(shù)列“等差”的特點及通項公式的含義。

            (2)等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。

            教具:多媒體、實物投影儀

            教學(xué)過程:

            一、復(fù)習(xí)引入:

            1.回憶上一節(jié)課學(xué)習(xí)數(shù)列的定義,請舉出一個具體的例子。表示數(shù)列有哪幾種方法——列舉法、通項公式、遞推公式。我們這節(jié)課接著學(xué)習(xí)一類特殊的數(shù)列——等差數(shù)列。

            2.由生活中具體的數(shù)列實例引入

            (1).國際奧運會早期,撐桿跳高的記錄近似的由下表給出:

            你能看出這4次撐桿條跳世界記錄組成的數(shù)列,它的各項之間有什么關(guān)系嗎?

            (2)某劇場前10排的座位數(shù)分別是:

            48、46、44、42、40、38、36、34、32、30

            引導(dǎo)學(xué)生觀察:數(shù)列①、②有何規(guī)律?

            引導(dǎo)學(xué)生發(fā)現(xiàn)這些數(shù)字相鄰兩個數(shù)字的差總是一個常數(shù),數(shù)列①先左到右相差0.2,數(shù)列②從左到右相差-2。

            二.新課探究,推導(dǎo)公式

            1.等差數(shù)列的概念

            如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。

            強調(diào)以下幾點:

            ① “從第二項起”滿足條件;

           、诠頳一定是由后項減前項所得;

           、勖恳豁椗c它的`前一項的差必須是同一個常數(shù)(強調(diào)“同一個常數(shù)” );

            所以上面的2、3都是等差數(shù)列,他們的公差分別為0.20,-2。

            在學(xué)生對等差數(shù)列有了直觀認識的基礎(chǔ)上,我將給出練習(xí)題,以鞏固知識的學(xué)習(xí)。

            [練習(xí)一]判斷下列各組數(shù)列中哪些是等差數(shù)列,哪些不是?如果是,寫出首項a1和公差d,如果不是,說明理由。

            1.3,5,7,…… √ d=2

            2.9,6,3,0,-3,…… √ d=-3

            3. 0,0,0,0,0,0,…….; √ d=0

            4. 1,2,3,2,3,4,……;×

            5. 1,0,1,0,1,……×

            在這個過程中我將采用邊引導(dǎo)邊提問的方法,以充分調(diào)動學(xué)生學(xué)習(xí)的積極性。

            2.等差數(shù)列通項公式

            如果等差數(shù)列{an}首項是a1,公差是d,那么根據(jù)等差數(shù)列的定義可得:

            a2 - a1 =d即:a2 =a1 +d

            a3 – a2 =d即:a3 =a2 +d = a1 +2d

            a4 – a3 =d即:a4 =a3 +d = a1 +3d

            ……

            猜想: a40 = a1 +39d

            進而歸納出等差數(shù)列的通項公式:an=a1+(n-1)d

            此時指出:這種求通項公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴密,為了培養(yǎng)學(xué)生嚴謹?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法------迭加法:

            n=a1+(n-1)d

            a2-a1=d

            a3-a2=d

            a4-a3 =d

            ……

            an –a(n-1) =d

            將這(n-1)個等式左右兩邊分別相加,就可以得到

            an-a1=(n-1)d

            即an=a1+(n-1)d (Ⅰ)

            當(dāng)n=1時,(Ⅰ)也成立,所以對一切n∈N﹡,上面的公式(Ⅰ)都成立,因此它就是等差數(shù)列{an}的通項公式。

            三.應(yīng)用舉例

            例1求等差數(shù)列,12,8,4,0,…的第10項;20項;第30項;

            例2 -401是不是等差數(shù)列-5,-9,-13,…的項?如果是,是第幾項?

            四.反饋練習(xí)

            1.P293練習(xí)A組第1題和第2題(要求學(xué)生在規(guī)定時間內(nèi)做完上述題目,教師提問)。目的:使學(xué)生熟悉通項公式對學(xué)生進行基本技能訓(xùn)練。

            五.歸納小結(jié)提煉精華

            (由學(xué)生總結(jié)這節(jié)課的收獲)

            1.等差數(shù)列的概念及數(shù)學(xué)表達式.

            強調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)

            2.等差數(shù)列的通項公式an= a1+(n-1) d會知三求一

            六.課后作業(yè)運用鞏固

            必做題:課本P284習(xí)題A組第3,4,5題

          等差數(shù)列教案6

            一、知識與技能

            1.了解公差的概念,明確一個數(shù)列是等差數(shù)列的限定條件,能根據(jù)定義判斷一個數(shù)列是等差數(shù)列;

            2.正確認識使用等差數(shù)列的各種表示法,能靈活運用通項公式求等差數(shù)列的首項、公差、項數(shù)、指定的項.

            二、過程與方法

            1.通過對等差數(shù)列通項公式的推導(dǎo)培養(yǎng)學(xué)生:的觀察力及歸納推理能力;

            2.通過等差數(shù)列變形公式的教學(xué)培養(yǎng)學(xué)生:思維的深刻性和靈活性.

            三、情感態(tài)度與價值觀

            通過等差數(shù)列概念的歸納概括,培養(yǎng)學(xué)生:的觀察、分析資料的能力,積極思維,追求新知的創(chuàng)新意識.

            教學(xué)過程

            導(dǎo)入新課

            師:上兩節(jié)課我們學(xué)習(xí)了數(shù)列的定義以及給出數(shù)列和表示數(shù)列的幾種方法——列舉法、通項公式、遞推公式、圖象法.這些方法從不同的角度反映數(shù)列的特點.下面我們看這樣一些數(shù)列的例子:(課本P41頁的4個例子)

            (1)0,5,10,15,20,25,…;

            (2)48,53,58,63,…;

            (3)18,15.5,13,10.5,8,5.5…;

            (4)10 072,10 144,10 216,10 288,10 366,….

            請你們來寫出上述四個數(shù)列的第7項.

            生:第一個數(shù)列的第7項為30,第二個數(shù)列的第7項為78,第三個數(shù)列的第7項為3,第四個數(shù)列的第7項為10 510.

            師:我來問一下,你依據(jù)什么寫出了這四個數(shù)列的第7項呢?以第二個數(shù)列為例來說一說.

            生:這是由第二個數(shù)列的后一項總比前一項多5,依據(jù)這個規(guī)律性我得到了這個數(shù)列的第7項為78.

            師:說得很有道理!我再請同學(xué)們仔細觀察一下,看看以上四個數(shù)列有什么共同特征?我說的是共同特征.

            生:1每相鄰兩項的差相等,都等于同一個常數(shù).

            師:作差是否有順序,誰與誰相減?

            生:1作差的順序是后項減前項,不能顛倒.

            師:以上四個數(shù)列的共同特征:從第二項起,每一項與它前面一項的差等于同一個常數(shù)(即等差);我們給具有這種特征的數(shù)列起一個名字叫——等差數(shù)列.

            這就是我們這節(jié)課要研究的內(nèi)容.

            推進新課

            等差數(shù)列的定義:一般地,如果一個數(shù)列從第二項起,每一項與它前一項的差等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列,這個常數(shù)就叫做等差數(shù)列的公差(常用字母“d”表示).

            (1)公差d一定是由后項減前項所得,而不能用前項減后項來求;

            (2)對于數(shù)列{an},若an-a n-1=d(與n無關(guān)的數(shù)或字母),n≥2,n∈N*,則此數(shù)列是等差數(shù)列,d叫做公差.

            師:定義中的關(guān)鍵字是什么?(學(xué)生:在學(xué)習(xí)中經(jīng)常遇到一些概念,能否抓住定義中的'關(guān)鍵字,是能否正確地、深入的理解和掌握概念的重要條件,更是學(xué)好數(shù)學(xué)及其他學(xué)科的重要一環(huán).因此教師:應(yīng)該教會學(xué)生:如何深入理解一個概念,以培養(yǎng)學(xué)生:分析問題、認識問題的能力)

            生:從“第二項起”和“同一個常數(shù)”.

            師::很好!

            師:請同學(xué)們思考:數(shù)列(1)、(2)、(3)、(4)的通項公式存在嗎?如果存在,分別是什么?

            生:數(shù)列(1)通項公式為5n-5,數(shù)列(2)通項公式為5n+43,數(shù)列(3)通項公式為2.5n-15.5,….

            師:好,這位同學(xué)用上節(jié)課學(xué)到的知識求出了這幾個數(shù)列的通項公式,實質(zhì)上這幾個通項公式有共同的特點,無論是在求解方法上,還是在所求的結(jié)果方面都存在許多共性,下面我們來共同思考.

           。酆献魈骄浚

            等差數(shù)列的通項公式

            師:等差數(shù)列定義是由一數(shù)列相鄰兩項之間關(guān)系而得到的,若一個等差數(shù)列{an}的首項是a1,公差是d,則據(jù)其定義可得什么?

            生:a2-a1=d,即a2=a1+d.

            師:對,繼續(xù)說下去!

            生:a3-a2=d,即a3=a2+d=a1+2d;

            a4-a3=d,即a4=a3+d=a1+3d;

            ……

            師:好!規(guī)律性的東西讓你找出來了,你能由此歸納出等差數(shù)列的通項公式嗎?

            生:由上述各式可以歸納出等差數(shù)列的通項公式是an=a1+(n-1)d.

            師:很好!這樣說來,若已知一數(shù)列為等差數(shù)列,則只要知其首項a1和公差d,便可求得其通項an了.需要說明的是:此公式只是等差數(shù)列通項公式的猜想,你能證明它嗎?

            生:前面已學(xué)過一種方法叫迭加法,我認為可以用.證明過程是這樣的:

            因為a2-a1=d,a3-a2=d,a4-a3=d,…,an-an-1=d.將它們相加便可以得到:an=a1+(n-1)d.

            師:太好了!真是活學(xué)活用啊!這樣一來我們通過證明就可以放心使用這個通項公式了.

           。劢處煟壕v]

            由上述關(guān)系還可得:am=a1+(m-1)d,

            即a1=am-(m-1)d.

            則an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d,

            即等差數(shù)列的第二通項公式an=am+(n-m)d.(這是變通的通項公式)

            由此我們還可以得到.

            [例題剖析]

            【例1】(1)求等差數(shù)列8,5,2,…的第20項;

            (2)-401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項?

            師:這個等差數(shù)列的首項和公差分別是什么?你能求出它的第20項嗎?

            生:1這題太簡單了!首項和公差分別是a1=8,d=5-8=2-5=-3.又因為n=20,所以由等差數(shù)列的通項公式,得a20=8+(20-1)×(-3)=-49.

            師:好!下面我們來看看第(2)小題怎么做.

            生:2由a1=-5,d=-9-(-5)=-4得數(shù)列通項公式為an=-5-4(n-1).

            由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立,解之,得n=100,即-401是這個數(shù)列的第100項.

            師:剛才兩個同學(xué)將問題解決得很好,我們做本例的目的是為了熟悉公式,實質(zhì)上通項公式就是an,a1,d,n組成的方程(獨立的量有三個).

            說明:(1)強調(diào)當(dāng)數(shù)列{an}的項數(shù)n已知時,下標(biāo)應(yīng)是確切的數(shù)字;(2)實際上是求一個方程的正整數(shù)解的問題.這類問題學(xué)生:以前見得較少,可向?qū)W生:著重點出本問題的實質(zhì):要判斷-401是不是數(shù)列的項,關(guān)鍵是求出數(shù)列的通項公式an,判斷是否存在正整數(shù)n,使得an=-401成立.

            【例2】已知數(shù)列{an}的通項公式an=pn+q,其中p、q是常數(shù),那么這個數(shù)列是否一定是等差數(shù)列?若是,首項與公差分別是什么?

            例題分析:

            師:由等差數(shù)列的定義,要判定{an}是不是等差數(shù)列,只要根據(jù)什么?

            生:只要看差an-an-1(n≥2)是不是一個與n無關(guān)的常數(shù).

            師:說得對,請你來求解.

            生:當(dāng)n≥2時,〔取數(shù)列{an}中的任意相鄰兩項an-1與an(n≥2)〕

            an-an-1=(pn+1)-[p(n-1)+q]=pn+q-(pn-p+q)=p為常數(shù),

            所以我們說{an}是等差數(shù)列,首項a1=p+q,公差為p.

            師:這里要重點說明的是:

            (1)若p=0,則{an}是公差為0的等差數(shù)列,即為常數(shù)列q,q,q,….

            (2)若p≠0,則an是關(guān)于n的一次式,從圖象上看,表示數(shù)列的各點(n,an)均在一次函數(shù)y=px+q的圖象上,一次項的系數(shù)是公差p,直線在y軸上的截距為q.

            (3)數(shù)列{an}為等差數(shù)列的充要條件是其通項an=pn+q(p、q是常數(shù)),稱其為第3通項公式.課堂練習(xí)

            (1)求等差數(shù)列3,7,11,…的第4項與第10項.

            分析:根據(jù)所給數(shù)列的前3項求得首項和公差,寫出該數(shù)列的通項公式,從而求出所┣笙.

            解:根據(jù)題意可知a1=3,d=7-3=4.∴該數(shù)列的通項公式為an=3+(n-1)×4,即an=4n-1(n≥1,n∈N*).∴a4=4×4-1=15,a 10=4×10-1=39.

            評述:關(guān)鍵是求出通項公式.

            (2)求等差數(shù)列10,8,6,…的第20項.

            解:根據(jù)題意可知a1=10,d=8-10=-2.

            所以該數(shù)列的通項公式為an=10+(n-1)×(-2),即an=-2n+12,所以a20=-2×20+12=-28.

            評述:要求學(xué)生:注意解題步驟的規(guī)范性與準(zhǔn)確性.

            (3)100是不是等差數(shù)列2,9,16,…的項?如果是,是第幾項?如果不是,請說明理由.

            分析:要想判斷一個數(shù)是否為某一個數(shù)列的其中一項,其關(guān)鍵是要看是否存在一個正整數(shù)n值,使得an等于這個數(shù).

            解:根據(jù)題意可得a1=2,d=9-2=7.因而此數(shù)列通項公式為an=2+(n-1)×7=7n-5.

            令7n-5=100,解得n=15.所以100是這個數(shù)列的第15項.

            (4)-20是不是等差數(shù)列0,,-7,…的項?如果是,是第幾項?如果不是,請說明理由.

            解:由題意可知a1=0,,因而此數(shù)列的通項公式為.

            令,解得.因為沒有正整數(shù)解,所以-20不是這個數(shù)列的項.

            課堂小結(jié)

            師:(1)本節(jié)課你們學(xué)了什么?(2)要注意什么?(3)在生:活中能否運用?(讓學(xué)生:反思、歸納、總結(jié),這樣來培養(yǎng)學(xué)生:的概括能力、表達能力)

            生:通過本課時的學(xué)習(xí),首先要理解和掌握等差數(shù)列的定義及數(shù)學(xué)表達式a n-a n-1=d(n≥2);其次要會推導(dǎo)等差數(shù)列的通項公式an=a1+(n-1)d(n≥1).

          等差數(shù)列教案7

            教學(xué)目標(biāo):

           。1)理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式;

            (2)利用等差數(shù)列的通項公式能由a1,d,n,an“知三求一”,了解等差數(shù)列的通項公式的推導(dǎo)過程及思想;

            (3)通過作等差數(shù)列的圖像,進一步滲透數(shù)形結(jié)合思想、函數(shù)思想;通過等差數(shù)列的通項公式應(yīng)用,滲透方程思想。

            教學(xué)重、難點:等差數(shù)列的定義及等差數(shù)列的通項公式。

            知識結(jié)構(gòu):一般數(shù)列定義通項公式法

            遞推公式法

            等差數(shù)列表示法應(yīng)用

            圖示法

            性質(zhì)列舉法

            教學(xué)過程:

           。ㄒ唬﹦(chuàng)設(shè)情境:

            1.觀察下列數(shù)列:

            1,2,3,4,……;(軍訓(xùn)時某排同學(xué)報數(shù))①

            10000,9000,8000,7000,……;(溫州市房價平均每月每平方下跌的價位)②

            2,2,2,2,……;(坐38路公交車的車費)③

            問題:上述三個數(shù)列有什么共同特點?(學(xué)生會發(fā)現(xiàn)很多規(guī)律,如都是整數(shù),再舉幾個非整數(shù)等差數(shù)列例子讓學(xué)生觀察)

            規(guī)律:從第2項起,每一項與前一項的差都等于同一常數(shù)。

            引出等差數(shù)列。

            (二)新課講解:

            1.等差數(shù)列定義:

            一般地,如果一個數(shù)列從第項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,公差通常用字母表示。

            問題:(a)能否用數(shù)學(xué)符號語言描述等差數(shù)列的定義?

            用遞推公式表示為或.

            (b)例1:觀察下列數(shù)列是否是等差數(shù)列:

           。1)1,-1,1,-1,…

            (2)1,2,4,6,8,10,…

            意在強調(diào)定義中“同一個常數(shù)”

            (c)例2:求上述三個數(shù)列的公差;公差d可取哪些值?d>0,d=0,d<0時,數(shù)列有什么特點

           。╠有不同的分類,如按整數(shù)分數(shù)分類,再舉幾個等差數(shù)列的例子觀察d的分類對數(shù)列的影

            響)

            說明:等差數(shù)列(通?煞Q為數(shù)列)的單調(diào)性:為遞增數(shù)列,為常數(shù)列,為遞減數(shù)列。

            例3:求等差數(shù)列13,8,3,-2,…的第5項。第89項呢?

            放手讓學(xué)生利用各種方法求a89,從中找出合適的方法,如利用不完全歸納法或累加法,然

            后引出求一般等差數(shù)列的通項公式。

            2.等差數(shù)列的通項公式:已知等差數(shù)列的首項是,公差是,求.

            (1)由遞推公式利用用不完全歸納法得出

            由等差數(shù)列的定義:,,,……

            ∴,,,……

            所以,該等差數(shù)列的通項公式:.

            (驗證n=1時成立)。

            這種由特殊到一般的推導(dǎo)方法,不能代替嚴格證明。要用數(shù)學(xué)歸納法證明的。

           。2)累加法求等差數(shù)列的通項公式

            讓學(xué)生體驗推導(dǎo)過程。(驗證n=1時成立)

            3.例題及練習(xí):

            應(yīng)用等差數(shù)列的通項公式

            追問:(1)-232是否為例3等差數(shù)列中的項?若是,是第幾項?

            (2)此數(shù)列中有多少項屬于區(qū)間[-100,0]?

            法一:求出a1,d,借助等差數(shù)列的'通項公式求a20。

            法二:求出d,a20=a5+15d=a12+8d

            在例4基礎(chǔ)上,啟發(fā)學(xué)生猜想證明

            練習(xí):

            梯子的最高一級寬31cm,最低一級寬119cm,中間還有3級,各級的寬度成等差數(shù)列,請計算中間各級的寬度。

            觀察圖像特征。

            思考:an是關(guān)于n的一次式,是數(shù)列{an}為等差數(shù)列的什么條件?

            課后反思:這節(jié)課的重點是等差數(shù)列定義和通項公式概念的理解,而不是公式的應(yīng)用,有些應(yīng)試教育的味道。有時搶學(xué)生的回答,沒有真正放手讓學(xué)生的思維發(fā)展,學(xué)生活動太少,課堂氛圍不好。學(xué)生對問題的反應(yīng)出乎設(shè)計的意料時,應(yīng)該順著學(xué)生的思維發(fā)展。

          等差數(shù)列教案8

            一、教學(xué)目標(biāo)

            【知識與技能】能夠復(fù)述等差數(shù)列的概念,能夠?qū)W會等差數(shù)列的通項公式的推導(dǎo)過程及蘊含的數(shù)學(xué)思想。

            【過程與方法】在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,提高知識、方法遷移能力;通過階梯性練習(xí),提高分析問題和解決問題的能力。

            【情感態(tài)度與價值觀】通過對等差數(shù)列的研究,具備主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習(xí)慣。

            二、教學(xué)重難點

            【教學(xué)重點】

            等差數(shù)列的概念、等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。

            【教學(xué)難點】

            等差數(shù)列通項公式的'推導(dǎo)。

            三、教學(xué)過程

            環(huán)節(jié)一:導(dǎo)入新課

            教師PPT展示幾道題目:

            1.我們經(jīng)常這樣數(shù)數(shù),從0開始,每隔5一個數(shù),可以得到數(shù)列:0,5,15,20,25 2.小明目前會100個單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92。

            在澳大利亞悉尼舉行的奧運會上,女子舉重正式列為比賽項目,該項目共設(shè)置了7個級別,其中交情的4個級別體重組成數(shù)列(單位:kg):48,53,58,63。

            教師提問學(xué)生這幾組數(shù)有什么特點?學(xué)生回答從第二項開始,每一項與前一項的差都等于一個常數(shù),教師引出等差數(shù)列。

            環(huán)節(jié)二:探索新知

            1.等差數(shù)列的概念

            學(xué)生閱讀教材,同桌討論,類比等比數(shù)列總結(jié)出等差數(shù)列的概念

            如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。

            問題1:等差數(shù)列的概念中,我們應(yīng)該注意哪些細節(jié)呢?

            環(huán)節(jié)三:課堂練習(xí)

            搶答:下列數(shù)列是否為等差數(shù)列?

           。1)1,2,4,6,8,10,12,……

            (2)0,1,2,3,4,5,6,……

           。3)3,3,3,3,3,3,3,……

            (4)-8,-6,-4,-2,0,2,4,……

            (5)3,0,-3,-6,-9,……

            環(huán)節(jié)四:小結(jié)作業(yè)

            小結(jié):1.等差數(shù)列的概念及數(shù)學(xué)表達式。

            關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)。

            作業(yè):現(xiàn)實生活中還有哪些等差數(shù)列的實際應(yīng)用呢?根據(jù)實際問題自己編寫兩道等差數(shù)列的題目并進行求解。

          等差數(shù)列教案9

            一、教材分析

            1、教材的地位和作用:

            數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面, 數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。

            2、教學(xué)目標(biāo)

            根據(jù)教學(xué)大綱的要求和學(xué)生的實際水平,確定了本次課的教學(xué)目標(biāo)

            a在知識上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導(dǎo)過程及思想;初步引入“數(shù)學(xué)建!钡乃枷敕椒ú⒛苓\用。

            b在能力上:培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。

            c在情感上:通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習(xí)慣。

            3、教學(xué)重點和難點

            根據(jù)教學(xué)大綱的要求我確定本節(jié)課的教學(xué)重點為:

           、俚炔顢(shù)列的概念。

           、诘炔顢(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。

            由于學(xué)生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導(dǎo)等差數(shù)列的同項公式是這節(jié)課的一個難點。同時,學(xué)生對“數(shù)學(xué)建!钡乃枷敕椒ㄝ^為陌生,因此用數(shù)學(xué)思想解決實際問題是本節(jié)課的另一個難點。

            二、學(xué)情分析對于三中的高一學(xué)生,知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。

            二、教法分析

            針對高中生這一思維特點和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動參與數(shù)學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。

            三、學(xué)法指導(dǎo)在引導(dǎo)分析時,留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時鼓勵學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的'問題弄清。

            四、教學(xué)程序

            本節(jié)課的教學(xué)過程由(一)復(fù)習(xí)引入(二)新課探究(三)應(yīng)用例解(四)反饋練習(xí)(五)歸納小結(jié)(六)布置作業(yè),六個教學(xué)環(huán)節(jié)構(gòu)成。

            (一)復(fù)習(xí)引入:

            1.從函數(shù)觀點看,數(shù)列可看作是定義域為__________對應(yīng)的一列函數(shù)值,從而數(shù)列的通項公式也就是相應(yīng)函數(shù)的______ 。(N﹡;解析式)

            通過練習(xí)1復(fù)習(xí)上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準(zhǔn)備。

            2. 小明目前會100個單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為: 100,98,96,94,92 ①

            3. 小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為 5,10,15,20,25 ②

            通過練習(xí)2和3 引出兩個具體的等差數(shù)列,初步認識等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認知能力。

            (二) 新課探究

            1、由引入自然的給出等差數(shù)列的概念:

            如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列, 這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):

           、 “從第二項起”滿足條件;

           、诠頳一定是由后項減前項所得;

           、勖恳豁椗c它的前一項的差必須是同一個常數(shù)(強調(diào)“同一個常數(shù)” );

            在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達式:

            an+1-an=d (n≥1)

            同時為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。

            1. 9 ,8,7,6,5,4,……;√ d=-1

            2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01

            3. 0,0,0,0,0,0,…….; √ d=0

            4. 1,2,3,2,3,4,……;×

            5. 1,0,1,0,1,……×

            其中第一個數(shù)列公差0,第三個數(shù)列公差=0

            由此強調(diào):公差可以是正數(shù)、負數(shù),也可以是0

          等差數(shù)列教案10

            設(shè)計思路

            數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面, 數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的'有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法。

            教學(xué)過程:

            一、片頭

           。30秒以內(nèi))

            前面學(xué)習(xí)了數(shù)列的概念與簡單表示法,今天我們來學(xué)習(xí)一種特殊的數(shù)列-等差數(shù)列。本節(jié)微課重點講解等差數(shù)列的定義, 并且能初步判斷一個數(shù)列是否是等差數(shù)列。

            30秒以內(nèi)

            二、正文講解(8分鐘左右)

            第一部分內(nèi)容:由三個問題,通過判斷分析總結(jié)出等差數(shù)列的定義 60 秒

            第二部分內(nèi)容:給出等差數(shù)列的定義及其數(shù)學(xué)表達式50 秒

            第三部分內(nèi)容:哪些數(shù)列是等差數(shù)列?并且求出首項與公差。根據(jù)這個練習(xí)總結(jié)出幾個常用的結(jié)152秒

            三、結(jié)尾

            (30秒以內(nèi))授課完畢,謝謝聆聽!30秒以內(nèi)

            自我教學(xué)反思

            本節(jié)課通過生活中一系列的實例讓學(xué)生觀察,從而得出等差數(shù)列的概念,并在此基礎(chǔ)上學(xué)會判斷一個數(shù)列是否是等差數(shù)列,培養(yǎng)了學(xué)生觀察、分析、歸納、推理的能力。充分體現(xiàn)了學(xué)生做數(shù)學(xué)的過程,使學(xué)生對等差數(shù)列有了從感性到理性的認識過程。

          等差數(shù)列教案11

            2。2。1等差數(shù)列學(xué)案

            一、預(yù)習(xí)問題:

            1、等差數(shù)列的定義:一般地,如果一個數(shù)列從 起,每一項與它的前一項的差等于同一個 ,那么這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的 , 通常用字母 表示。

            2、等差中項:若三個數(shù) 組成等差數(shù)列,那么A叫做 與 的 ,

            即 或 。

            3、等差數(shù)列的單調(diào)性:等差數(shù)列的公差 時,數(shù)列為遞增數(shù)列; 時,數(shù)列為遞減數(shù)列; 時,數(shù)列為常數(shù)列;等差數(shù)列不可能是 。

            4、等差數(shù)列的.通項公式: 。

            5、判斷正誤:

            ①1,2,3,4,5是等差數(shù)列; ( )

           、1,1,2,3,4,5是等差數(shù)列; ( )

           、蹟(shù)列6,4,2,0是公差為2的等差數(shù)列; ( )

           、軘(shù)列 是公差為 的等差數(shù)列; ( )

           、輸(shù)列 是等差數(shù)列; ( )

            ⑥若 ,則 成等差數(shù)列; ( )

           、呷 ,則數(shù)列 成等差數(shù)列; ( )

           、嗟炔顢(shù)列是相鄰兩項中后項與前項之差等于非零常數(shù)的數(shù)列; ( )

           、岬炔顢(shù)列的公差是該數(shù)列中任何相鄰兩項的差。 ( )

            6、思考:如何證明一個數(shù)列是等差數(shù)列。

            二、實戰(zhàn)操作:

            例1、(1)求等差數(shù)列8,5,2,的第20項。

            (2) 是不是等差數(shù)列 中的項?如果是,是第幾項?

           。3)已知數(shù)列 的公差 則

            例2、已知數(shù)列 的通項公式為 ,其中 為常數(shù),那么這個數(shù)列一定是等差數(shù)列嗎?

            例3、已知5個數(shù)成等差數(shù)列,它們的和為5,平方和為 求這5個數(shù)。

          等差數(shù)列教案12

            一、教材分析

            1、教學(xué)目標(biāo):

            A.理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導(dǎo)過程及思想;

            B.培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。

            C 通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習(xí)慣。

            2、教學(xué)重點和難點

           、俚炔顢(shù)列的概念。

            ②等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。用不完全歸納法推導(dǎo)等差數(shù)列的通項公式。

            二、教法分析

            采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動參與數(shù)學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。

            三、教學(xué)程序

            本節(jié)課的教學(xué)過程由(一)復(fù)習(xí)引入(二)新課探究(三)應(yīng)用例解(四)反饋練習(xí)(五)歸納小結(jié)(六)布置作業(yè),六個教學(xué)環(huán)節(jié)構(gòu)成。

            (一)復(fù)習(xí)引入:

            1.全國統(tǒng)一鞋號中成年女鞋的各種尺碼(表示鞋底長,單位是c)分別是

            21,22,23,24,25,

            2.某劇場前10排的座位數(shù)分別是:

            38,40,42,44,46,48,50,52,54,56。

            3.某長跑運動員7天里每天的訓(xùn)練量(單位:)是:

            7500,8000,8500,9000,9500,10000,10500。

            共同特點:

            從第2項起,每一項與前一項的差都等于同一個常數(shù)。

            (二) 新課探究

            1、給出等差數(shù)列的概念:

            如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列, 這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):

            ① “從第二項起”滿足條件;

            ②公差d一定是由后項減前項所得;

           、酃羁梢允钦龜(shù)、負數(shù),也可以是0。

            2、推導(dǎo)等差數(shù)列的通項公式

            若等差數(shù)列{an }的首項是 ,公差是d, 則據(jù)其定義可得:

            - =d 即: = +d

            – =d 即: = +d = +2d

            – =d 即: = +d = +3d

            進而歸納出等差數(shù)列的通項公式:

            = +(n-1)d

            此時指出:

            這種求通項公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴密,為了培養(yǎng)學(xué)生嚴謹?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法------迭加法:

            – =d

            – =d

            – =d

            – =d

            將這(n-1)個等式左右兩邊分別相加,就可以得到 – = (n-1) d即 = +(n-1) d

            當(dāng)n=1時,上面等式兩邊均為 ,即等式也是成立的,這表明當(dāng)n∈ 時上面公式都成立,因此它就是等差數(shù)列{an }的通項公式。

            接著舉例說明:若一個等差數(shù)列{ }的首項是1,公差是2,得出這個數(shù)列的'通項公式是: =1+(n-1)×2 , 即 =2n-1 以此來鞏固等差數(shù)列通項公式運用

           。ㄈ⿷(yīng)用舉例

            這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運動變化的觀點看等差數(shù)列通項公式中的 、d、n、 這4個量之間的關(guān)系。當(dāng)其中的部分量已知時,可根據(jù)該公式求出另一部分量。

            例1 (1)求等差數(shù)列8,5,2,…的第20項;

           。2)-401是不是等差數(shù)列-5,-9,-13,…的項?如果是,是第幾項?

            第二問實際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項公式

            例2 在等差數(shù)列{an}中,已知 =10, =31,求首項 與公差d。

            在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對通項公式的鞏固

            例3 梯子的最高一級寬33c,最低一級寬110c,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。

            (四)反饋練習(xí)

            1、小節(jié)后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時間內(nèi)完成)。目的:使學(xué)生熟悉通項公式,對學(xué)生進行基本技能訓(xùn)練。

            2、若數(shù)列{ } 是等差數(shù)列,若 = ,(為常數(shù))試證明:數(shù)列{ }是等差數(shù)列

            此題是對學(xué)生進行數(shù)列問題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問題同時強化了等差數(shù)列的概念。

            (五)歸納小結(jié) (由學(xué)生總結(jié)這節(jié)課的收獲)

            1.等差數(shù)列的概念及數(shù)學(xué)表達式.

            強調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)

            2.等差數(shù)列的通項公式 = +(n-1) d會知三求一

            (六) 布置作業(yè)

            必做題:課本P114 習(xí)題3.2第2,6 題

            選做題:已知等差數(shù)列{ }的首項 = -24,從第10項開始為正數(shù),求公差d的取值范圍。(目的:通過分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求)

            四、板書設(shè)計

            在板書中突出本節(jié)重點,將強調(diào)的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標(biāo)注,同時給學(xué)生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學(xué)方法。

          等差數(shù)列教案13

            【教學(xué)目標(biāo)】

            一、知識與技能

            1.掌握等差數(shù)列前n項和公式;

            2.體會等差數(shù)列前n項和公式的推導(dǎo)過程;

            3.會簡單運用等差數(shù)列前n項和公式。

            二、過程與方法

            1. 通過對等差數(shù)列前n項和公式的推導(dǎo),體會倒序相加求和的思想方法;

            2. 通過公式的運用體會方程的思想。

            三、情感態(tài)度與價值觀

            結(jié)合具體模型,將教材知識和實際生活聯(lián)系起來,使學(xué)生感受數(shù)學(xué)的實用性,有效激發(fā)學(xué)習(xí)興趣,并通過對等差數(shù)列求和歷史的了解,滲透數(shù)學(xué)史和數(shù)學(xué)文化。

            【教學(xué)重點】

            等差數(shù)列前n項和公式的推導(dǎo)和應(yīng)用。

            【教學(xué)難點】

            在等差數(shù)列前n項和公式的推導(dǎo)過程中體會倒序相加的思想方法。

            【重點、難點解決策略】

            本課在設(shè)計上采用了由特殊到一般、從具體到抽象的教學(xué)策略。利用數(shù)形結(jié)合、類比歸納的思想,層層深入,通過學(xué)生自主探究、分析、整理出推導(dǎo)公式的思路,同時,借助多媒體的直觀演示,幫助學(xué)生理解,師生互動、講練結(jié)合,從而突出重點、突破教學(xué)難點。

            【教學(xué)用具】

            多媒體軟件,電腦

            【教學(xué)過程】

            一、明確數(shù)列前n項和的定義,確定本節(jié)課中心任務(wù):

            本節(jié)課我們來學(xué)習(xí)《等差數(shù)列的前n項和》,那么什么叫數(shù)列的前n項和呢,對于數(shù)列{an}:a1,a2,a3,…,an,…我們稱a1+a2+a3+…+an為數(shù)列{an}的前n項和,用sn表示,記sn=a1+a2+a3+…+an,

            如S1 =a1, S7 =a1+a2+a3+……+a7,下面我們來共同探究如何求等差數(shù)列的前n項和。

            二、問題牽引,探究發(fā)現(xiàn)

            問題1:(播放媒體資料情景引入)印度泰姬陵世界七大奇跡之一。傳說陵寢中有一個三角形圖案,以相同大小的圓寶石鑲飾而成,共有100層(見圖),奢靡之程度,可見一斑。你知道這個圖案一共花了多少圓寶石嗎?

            即: S100=1+2+3+······+100=?

            著名數(shù)學(xué)家高斯小時候就會算,聞名于世;那么小高斯是如何快速地得出答案的呢?請同學(xué)們思考高斯方法的特點,適合類型和方法本質(zhì)。

            特點: 首項與末項的和: 1+100=101,

            第2項與倒數(shù)第2項的和: 2+99 =101,

            第3項與倒數(shù)第3項的和: 3+98 =101,

            · · · · · ·

            第50項與倒數(shù)第50項的和: 50+51=101,

            于是所求的和是: 101×50=5050。

            1+2+3+ ······ +100= 101×50 = 5050

            同學(xué)們討論后總結(jié)發(fā)言:等差數(shù)列項數(shù)為偶數(shù)相加時首尾配對,變不同數(shù)的加法運算為相同數(shù)的乘法運算大大提高效率。高斯的方法很妙,如果等差數(shù)列的項數(shù)為奇數(shù)時怎么辦呢?

            探索與發(fā)現(xiàn)1:假如讓你計算從第一層到第21層的珠寶數(shù),高斯的首尾配對法行嗎?

            即計算S21=1+2+3+ ······ +21的值,在這個過程中讓學(xué)生發(fā)現(xiàn)當(dāng)項數(shù)為奇數(shù)時,首尾配對出現(xiàn)了問題,通過動畫演示引導(dǎo)幫助學(xué)生思考解決問題的辦法,為引出倒序相加法做鋪墊。

            把“全等三角形”倒置,與原圖構(gòu)成平行四邊形。平行四邊形中的每行寶石的個數(shù)均為21個,共21行。有什么啟發(fā)?

            1+ 2 + 3 + …… +20 +21

            21 + 20 + 19 + …… + 2 +1

            S21=1+2+3+…+21=(21+1)×21÷2=231

            這個方法也很好,那么項數(shù)為偶數(shù)這個方法還行嗎?

            探索與發(fā)現(xiàn)2:第5層到12層一共有多少顆圓寶石?

            學(xué)生探究的同時通過動畫演示幫助學(xué)生思考剛才的方法是否同樣可行?請同學(xué)們自主探究一下(老師演示動畫幫助學(xué)生)

            S8=5+6+7+8+9+10+11+12=

            【設(shè)計意圖】進一步引導(dǎo)學(xué)生探究項數(shù)為偶數(shù)的等差數(shù)列求和時倒序相加是否可行。從而得出倒序相加法適合任意項數(shù)的等差數(shù)列求和,最終確立倒序相加的思想和方法!

            好,這樣我們就找到了一個好方法——倒序相加法!現(xiàn)在來試一試如何求下面這個等差數(shù)列的前n項和?

            問題2:等差數(shù)列1,2,3,…,n, … 的前n項和怎么求呢?

            解:(根據(jù)前面的學(xué)習(xí),請學(xué)生自主思考獨立完成)

            【設(shè)計意圖】強化倒序相加法的理解和運用,為更一般的等差數(shù)列求和打下基礎(chǔ)。

            至此同學(xué)們已經(jīng)掌握了倒序相加法,相信大家可以推導(dǎo)更一般的等差數(shù)列前n項和公式了。

            問題3:對于一般的等差數(shù)列{an}首項為a1,公差為d,如何推導(dǎo)它的前n項和sn公式呢?

            即求 =a1+a2+a3+……+an=

            ∴(1)+(2)可得:2

            ∴

            公式變形:將代入可得:

            【設(shè)計意圖】學(xué)生在前面的探究基礎(chǔ)上水到渠成順理成章很快就可以推導(dǎo)出一般等差數(shù)列的.前n項和公式,從而完成本節(jié)課的中心任務(wù)。在這個過程中放手讓學(xué)生自主推導(dǎo),同時也復(fù)習(xí)等差數(shù)列的通項公式和基本性質(zhì)。

            三、公式的認識與理解:

            1、根據(jù)前面的推導(dǎo)可知等差數(shù)列求和的兩個公式為:

           。ü揭唬

           。ü蕉

            探究: 1、(1)相同點: 都需知道a1與n;

            (2)不同點: 第一個還需知道an ,第二個還需知道d;

            (3)明確若a1,d,n,an中已知三個量就可求Sn。

            2、兩個公式共涉及a1, d, n, an,Sn五個量,“知三”可“求二”。

            2、探索與發(fā)現(xiàn)3:等差數(shù)列前n項和公式與梯形面積公式有什么聯(lián)系?

            用梯形面積公式記憶等差數(shù)列前 n 項和公式,這里對圖形進行了割、補兩種處理,對應(yīng)著等差數(shù)列 n 項和的兩個公式.,請學(xué)生聯(lián)想思考總結(jié)來有助于記憶。

            【設(shè)計意圖】幫助學(xué)生類比聯(lián)想,拓展思維,增加興趣,強化記憶

            四、公式應(yīng)用、講練結(jié)合

            1、練一練:

            有了兩個公式,請同學(xué)們來練一練,看誰做的快做的對!

            根據(jù)下列各題中的條件,求相應(yīng)的等差數(shù)列{an}的Sn :

           。1)a1=5,an=95,n=10

            解:500

            (2)a1=100,d=-2,n=50

            解:

            【設(shè)計意圖】熟悉并強化公式的理解和應(yīng)用,進一步鞏固“知三求二”。

            下面我們來看兩個例題:

            2、例題1:

            20xx年11月14日教育部下發(fā)了<<關(guān)于在中小學(xué)實施“校校通”工程的通知>>.某市據(jù)此提出了實施“校校通”工程的總目標(biāo):從20xx年起用10年時間,在全市中小學(xué)建成不同標(biāo)準(zhǔn)的校園網(wǎng). 據(jù)測算,20xx年該市用于“校校通”工程的經(jīng)費為500萬元.為了保證工程的順利實施,計劃每年投入的資金都比上一年增加50萬元.那么從20xx年起的未來10年內(nèi),該市在“校校通”工程中的總投入是多少?

            解:設(shè)從20xx年起第n年投入的資金為an,根據(jù)題意,數(shù)列{an}是一個等差數(shù)列,其中 a1=500, d=50

            那么,到20xx年(n=10),投入的資金總額為

            答: 從20xx年起的未來10年內(nèi),該市在“校校通”工程中的總投入是7250萬元。

            【設(shè)計意圖】讓學(xué)生體會數(shù)列知識在生活中的應(yīng)用及簡單的數(shù)學(xué)建模思想方法。

            3、例題2:

            已知一個等差數(shù)列{an}的前10項的和是310,前20項的和是1220,由這些條件可以確定這個等差數(shù)列的前n項和的公式嗎?

            解:

            法1:由題意知

            ,

            代入公式得:

            解得,

            法2:由題意知

            ,

            代入公式得:

            ,

            即,

           、冖俚,,故

            由得故

            【設(shè)計意圖】掌握并能靈活應(yīng)用公式并體會方程的思想方法。

            4、反饋達標(biāo):

            練習(xí)一:在等差數(shù)列{an}中,a1=20, an=54,sn =999,求n.

            解:由解n=27

            練習(xí)2: 已知{an}為等差數(shù)列,,求公差。

            解:由公式得

            即d=2

            【設(shè)計意圖】進一強化求和公式的靈活應(yīng)用及化歸的思想(化歸到首項和公差這兩個基本元)。

            五、歸納總結(jié) 分享收獲:(活躍課堂氣氛,鼓勵學(xué)生大膽發(fā)言,培養(yǎng)總結(jié)和表達能力)

            1、倒序相加法求和的思想及應(yīng)用;

            2、等差數(shù)列前n項和公式的推導(dǎo)過程;

            3、掌握等差數(shù)列的兩個求和公式,;

            4、前n項和公式的靈活應(yīng)用及方程的思想。

            …………

            六、作業(yè)布置:

           。ㄒ唬⿻孀鳂I(yè):

            1.已知等差數(shù)列{an},其中d=2,n=15, an =-10,求a1及sn。

            2.在a,b之間插入10個數(shù),使它們同這兩個數(shù)成等差數(shù)列,求這10個數(shù)的和。

            (二)課后思考:

            思考:等差數(shù)列的前n項和公式的推導(dǎo)方法除了倒序相加法還有沒有其它方法呢?

            【設(shè)計意圖】通過布置書面作業(yè)鞏固所學(xué)知識及方法,同時通過布置課后思考題來延伸知識拓展思維。

            附:板書設(shè)計

            等差數(shù)列的前n項和

            1、數(shù)列前n項和的定義:

            2、等差數(shù)列前n項和公式的推導(dǎo):

            3、公式的認識與理解:

            公式一:

            公式二:

            四:例題及解答:

            議練活動:

          等差數(shù)列教案14

            [教學(xué)目標(biāo)]

            1.知識與技能目標(biāo):掌握等差數(shù)列的概念;理解等差數(shù)列的通項公式的推導(dǎo)過程;了解 等差數(shù)列的函數(shù)特征;能用等差數(shù)列的通項公式解決相應(yīng)的一些問題。

            2.過程與方法目標(biāo):讓學(xué)生親身經(jīng)歷“從特殊入手,研究對象的性質(zhì),再逐步擴大到一般”這一研究過程,培養(yǎng)他們觀察、分析、歸納、推理的能力。通過階梯性的強化練習(xí),培養(yǎng)學(xué)生分析問題解決問題的能力。

            3.情感態(tài)度與價值觀目標(biāo):通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求索精神;使學(xué)生逐步養(yǎng)成細心觀察、認真分析、及時總結(jié)的好習(xí)慣。

            [教學(xué)重難點]

            1.教學(xué)重點:等差數(shù)列的概念的理解,通項公式的推導(dǎo)及應(yīng)用。

            2.教學(xué)難點:(1)對等差數(shù)列中“等差”兩字的把握;

           。2)等差數(shù)列通項公式的推導(dǎo)。

            [教學(xué)過程]

            一.課題引入

            創(chuàng)設(shè)情境 引入課題:(這節(jié)課我們將學(xué)習(xí)一類特殊的數(shù)列,下面我們看這樣一些例子)

            (1)、在過去的三百多年里,人們分別在下列時間里觀測到了哈雷慧星:

            1682,1758,1834,1910,1986,( )

            你能預(yù)測出下次觀測到哈雷慧星的大致時間嗎?判斷的依據(jù)是什么呢?

           。2)、通常情況下,從地面到11km的高空,氣溫隨高度的變化而變化符合一定的規(guī)律,請你根據(jù)下表估計一下珠穆朗瑪峰峰頂?shù)臏囟取?/p>

           。3) 1,4,7,10,( ),16,…

           。4) 2,0,-2,-4,-6,( ),…

            它們共同的規(guī)律是?

            從第二項起,每一項與前一項的差等于同一個常數(shù)。

            我們把有這一特點的數(shù)列叫做等差數(shù)列。

            二、新課探究

           。ㄒ唬┑炔顢(shù)列的定義

            1、等差數(shù)列的定義

            如果一個數(shù)列從第二項起,每一項與前一項的.差等于同一個常數(shù),那么這個數(shù)列就叫等差數(shù)列。這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。

           。1)定義中的關(guān)健詞有哪些?

            (2)公差d是哪兩個數(shù)的差?

            2、等差數(shù)列定義的數(shù)學(xué)表達式:

            試一試:它們是等差數(shù)列嗎?

            (1) 1, 3, 5, 7, 9, 2, 4, 6, 8, 10…

            (2) 5,5,5,5,5,5,…

            (3) -1,-3,-5,-7,-9,…

            (4) 數(shù)列{an},若an+1-an=3

            3、等差中頂定義

            在如下的兩個數(shù)之間,插入一個什么數(shù)后這三個數(shù)就會成為一個等差數(shù)列:

            (1)、2 ,( ) ,4 (2)、-12,( ) ,0 ( 3 ) a ,( ),b

            如果在a與b中間插入一個數(shù)A,使a,A,b成等差數(shù)列,那么A叫做a與b的等差中項。(二)等差數(shù)列的通項公式

            探究1:等差數(shù)列的通項公式(求法一)

            如果等差數(shù)列 首項是 ,公差是 ,那么這個等差數(shù)列 如何表示? 呢?

            根據(jù)等差數(shù)列的定義可得:

            , , ,…。

            所以: ,

            ,

            ,

            ……

            由此得 ,

            因此等差數(shù)列的通項公式就是: ,

            探究2:等差數(shù)列的通項公式(求法二)

            根據(jù)等差數(shù)列的定義可得:

            ……

            將以上 -1個式子相加得等差數(shù)列的通項公式就是: ,

            三、應(yīng)用與探索

            例1、(1) 求等差數(shù)列8,5,2,…,的第20項。

            (2) 等差數(shù)列 -5,-9,-13,…,的第幾項是 –401?

           。2)、分析:要判斷-401是不是數(shù)列的項,關(guān)鍵是求出通項公式,并判斷是否存在正整數(shù)n,使得 成立,實質(zhì)上是要求方程 的正整數(shù)解。

            例2、在等差數(shù)列中,已知 =10, =31,求首項 與公差d.

            解:由 ,得 。

            在應(yīng)用等差數(shù)列的通項公式an=a1+(n-1)d過程中,對an,a1,n,d這四個變量,知道其中三個量就可以求余下的一個量,這是一種方程的思想。

            鞏固練習(xí)

            1. 等差數(shù)列{an}的前三項依次為 a-6,-3a-5,-10a-1,則a =( )。

            A. 1 B. -1 C. -2 D. 22.一張?zhí)葑幼罡咭患墝?3cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。求公差d。四、小結(jié)

            1.等差數(shù)列的通項公式:

            公差 ;

            2. 等差數(shù)列的計算問題,通常知道其中三個量就可以利用通項公式an=a1+(n-1)d,求余下的一個量;

            3. 判斷一個數(shù)列是否為等差數(shù)列只需看 是否為常數(shù)即可;

            4. 利用從特殊到一般的思維去發(fā)現(xiàn)數(shù)學(xué)系規(guī)律或解決數(shù)學(xué)問題.

            五、作業(yè):

            1、必做題:課本第40頁 習(xí)題2.2 第1,3,5題

            2、選做題:如何以最快的速度求:1+2+3++100=

            高斯說:“請同學(xué)們預(yù)習(xí)下一節(jié):等差數(shù)列的前N項和!

          【等差數(shù)列教案】相關(guān)文章:

          等差數(shù)列教案優(yōu)秀11-21

          數(shù)學(xué)等差數(shù)列教案優(yōu)秀03-12

          《等差數(shù)列》教學(xué)反思05-16

          教案中班教案02-23

          實用荷花教案教案荷花教案05-16

          教案幼兒中班教案02-15

          藝術(shù)教案中班教案03-05

          鉆洞洞教案教案12-10

          大班教案認識a的教案10-10