勾股定理的教學(xué)反思
身為一位到崗不久的教師,教學(xué)是重要的工作之一,我們可以把教學(xué)過(guò)程中的感悟記錄在教學(xué)反思中,教學(xué)反思我們應(yīng)該怎么寫(xiě)呢?下面是小編為大家收集的勾股定理的教學(xué)反思,僅供參考,大家一起來(lái)看看吧。
勾股定理的教學(xué)反思1
我用了4課時(shí)講授了八年級(jí)下冊(cè)數(shù)學(xué)人教版的第十八章第一節(jié)勾股定理,第一課時(shí)我主要講授的是勾股定理的探究和驗(yàn)證,并舉例計(jì)算有關(guān)直角三角形已知兩邊長(zhǎng)求第三邊的問(wèn)題;第二課時(shí)我主要講授了各種類型的有關(guān)直角三角形邊長(zhǎng)或者面積相關(guān)問(wèn)題;第三課時(shí)講授了如何用勾股定理解決生活中的實(shí)際問(wèn)題;第四課時(shí)主要講授了怎樣在數(shù)軸上找出無(wú)理數(shù)對(duì)應(yīng)的點(diǎn)。這4個(gè)課時(shí)我采用的教學(xué)方法是:引導(dǎo)—探究—發(fā)現(xiàn)法;為學(xué)生設(shè)計(jì)的學(xué)習(xí)方法是:自主探究與合作交流相結(jié)合。
第一課時(shí)的課堂教學(xué)中,我始終注意了調(diào)動(dòng)學(xué)生的積極性。興趣是最好的老師,所以無(wú)論是引入、拼圖,還是歷史回顧,我都注意去調(diào)動(dòng)學(xué)生,讓學(xué)生滿懷激情地投入到活動(dòng)中。因此,課堂效率較高。勾股定理作為“千古第一定理”,其魅力在于其歷史價(jià)值和應(yīng)用價(jià)值,因此我注意充分挖掘了其內(nèi)涵。特別是讓學(xué)生事先進(jìn)行調(diào)查,再在課堂上進(jìn)行展示,這極大地調(diào)動(dòng)了學(xué)生,既加深了對(duì)勾股定理文化的'理解,又培養(yǎng)了他們收集、整理資料的能力。勾股定理的驗(yàn)證既是本節(jié)課的重點(diǎn),也是本節(jié)課的難點(diǎn),為了突破這一難點(diǎn),我設(shè)計(jì)了拼圖活動(dòng),并自制精巧的課件讓學(xué)生從形上感知,再層層設(shè)問(wèn),從面積(數(shù))入手,師生共同探究突破了本節(jié)課的難點(diǎn)。
第二課時(shí)我依據(jù)“學(xué)生是學(xué)習(xí)的主體”這一理念,在探索勾股定理的整個(gè)過(guò)程中,本節(jié)課始終采用學(xué)生自主探索和與同伴合作交流相結(jié)合的方式進(jìn)行主動(dòng)學(xué)習(xí)。教師只在學(xué)生遇到困難時(shí),進(jìn)行引導(dǎo)或組織學(xué)生通過(guò)討論來(lái)突破難點(diǎn)。為了讓學(xué)生在學(xué)習(xí)過(guò)程中自我發(fā)現(xiàn)勾股定理,本節(jié)課首先情景創(chuàng)設(shè)激發(fā)興趣,再通過(guò)幾個(gè)探究活動(dòng)引導(dǎo)學(xué)生從探究等腰直角三角形這一特殊情形入手,自然過(guò)渡到探究一般直角三角形,學(xué)生通過(guò)觀察圖形,計(jì)算面積,分析數(shù)據(jù),發(fā)現(xiàn)直角三角形三邊的關(guān)系,進(jìn)而得到勾股定理。
第三課時(shí)在課堂教學(xué)中,始終注重學(xué)生的自主探究,由實(shí)例引入,激發(fā)了學(xué)生的學(xué)習(xí)興趣,然后通過(guò)動(dòng)手操作、大膽猜想、勇于驗(yàn)證等一系列自主探究、合作交流活動(dòng)得出定理,并運(yùn)用定理進(jìn)一步鞏固提高,切實(shí)體現(xiàn)了學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人的新課程理念。對(duì)于拼圖驗(yàn)證,學(xué)生還沒(méi)有接觸過(guò),所以,教學(xué)中,教師給予了學(xué)生適當(dāng)?shù)闹笇?dǎo)與鼓勵(lì),教師較好地充當(dāng)了學(xué)生數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者、合作者。另外教會(huì)學(xué)生思維,培養(yǎng)學(xué)生多種能力。課前查資料,培養(yǎng)了學(xué)生的自學(xué)能力及歸類總結(jié)能力;課上的探究培養(yǎng)了學(xué)生的動(dòng)手動(dòng)腦的能力、觀察能力、猜想歸納總結(jié)的能力、合作交流的能力……但本節(jié)課拼圖驗(yàn)證的方法以前學(xué)生沒(méi)接觸過(guò),稍嫌吃力。因此,在今后的教學(xué)中還需要進(jìn)一步關(guān)注學(xué)生的實(shí)驗(yàn)操作活動(dòng),提高其實(shí)踐能力。
第四課時(shí)我另外向?qū)W生介紹了勾股定理的證明方法:以趙爽的“弦圖”為代表,用幾何圖形的截、割、拼、補(bǔ),來(lái)證明代數(shù)式之間的恒等關(guān)系;以歐幾里得的證明方法為代表,運(yùn)用歐氏幾何的基本定理進(jìn)行證明;以劉徽的“青朱出入圖”為代表,“無(wú)字證明”。
總的來(lái)看,學(xué)生掌握的情況比較好,都能夠達(dá)到預(yù)期要求,但介于有關(guān)勾股定理的類型題很多,不能一一為學(xué)生講解,但我還是建議將北師大版本中的《螞蟻怎樣走最近》的類型題加入本教材。
勾股定理的教學(xué)反思2
教學(xué)目標(biāo)
一、知識(shí)與技能
1.掌握直角三角形的判別條件。
2.熟記一些勾股數(shù)。
3.掌握勾股定理的逆定理的探究方法。
二、過(guò)程與方法
1.用三邊的數(shù)量關(guān)系來(lái)判斷一個(gè)三角形是否為直角三角形,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想。
2.通過(guò)對(duì)Rt△判別條件的研究,培養(yǎng)學(xué)生大膽猜想,勇于探索的創(chuàng)新精神。
三、情感態(tài)度與價(jià)值觀
1.通過(guò)介紹有關(guān)歷史資料,激發(fā)學(xué)生解決問(wèn)題的愿望。
2.通過(guò)對(duì)勾股定理逆定理的探究;培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和創(chuàng)新精神。
教學(xué)重點(diǎn)探究勾股定理的逆定理,理解互逆命題,原命題、逆命題的有關(guān)概念及關(guān)系.理解并掌握勾股定理的逆定理,并會(huì)應(yīng)用。
教學(xué)難點(diǎn)理解勾股定理的逆定理的推導(dǎo)。
教具準(zhǔn)備多媒體課件。
教學(xué)過(guò)程
一、創(chuàng)設(shè)問(wèn)屬情境,引入新課
活動(dòng)1
(1)總結(jié)直角三角形有哪些性質(zhì)。
。2)一個(gè)三角形,滿足什么條件是直角三角形?
設(shè)計(jì)意圖:通過(guò)對(duì)前面所學(xué)知識(shí)的歸納總結(jié),聯(lián)想到用三邊的關(guān)系是否可以判斷一個(gè)三角形為直角三角形,提高學(xué)生發(fā)現(xiàn)反思問(wèn)題的能力。
師生行為學(xué)生分組討論,交流總結(jié);教師引導(dǎo)學(xué)生回憶。
本活動(dòng),教師應(yīng)重點(diǎn)關(guān)注學(xué)生:①能否積極主動(dòng)地回憶,總結(jié)前面學(xué)過(guò)的舊知識(shí);②能否“溫故知新”。
生:直角三角形有如下性質(zhì):
(1)有一個(gè)角是直角;
。2)兩個(gè)銳角互余;
(3)兩直角邊的平方和等于斜邊的平方;
(4)在含30°角的直角三角形中,30°的角所對(duì)的直角邊是斜邊的一半。
師:那么,一個(gè)三角形滿足什么條件,才能是直角三角形呢?
生:有一個(gè)內(nèi)角是90°,那么這個(gè)三角形就為直角三角形。
生:如果一個(gè)三角形,有兩個(gè)角的和是90°,那么這個(gè)三角形也是直角三角形。
師:前面我們剛學(xué)習(xí)了勾股定理,知道一個(gè)直角三角形的兩直角邊a,b斜邊c具有一定的數(shù)量關(guān)系即a2+b2=c2,我們是否可以不用角,而用三角形三邊的關(guān)系來(lái)判定它是否為直角三角形呢?我們來(lái)看一下古埃及人如何做?
二、講授新課
活動(dòng)2
問(wèn)題:據(jù)說(shuō)古埃及人用下圖的方法畫(huà)直角:把一根長(zhǎng)蠅打上等距離的13個(gè)結(jié),然后以3個(gè)結(jié),4個(gè)結(jié)、5個(gè)結(jié)的長(zhǎng)度為邊長(zhǎng),用木樁釘成一個(gè)三角形,其中一個(gè)角便是直角。
這個(gè)問(wèn)題意味著,如果圍成的三角形的三邊分別為3、4、5。有下面的關(guān)系“32+42=52”。那么圍成的三角形是直角三角形。
畫(huà)畫(huà)看,如果三角形的`三邊分別為2.5cm,6cm,6.5cm,有下面的關(guān)系,“2.52+62=6.52,畫(huà)出的三角形是直角三角形嗎?換成三邊分別為4cm、7.5cm、8.5cm.再試一試.
設(shè)計(jì)意圖:由特殊到一般,歸納猜想出“如果三角形三邊a,b,c滿足a2+b2=c2,那么這個(gè)三角形就為直免三角形的結(jié)論,培養(yǎng)學(xué)生動(dòng)手操作能力和尋求解決數(shù)學(xué)問(wèn)題的一般方法。
師生行為讓學(xué)生在小組內(nèi)共同合作,協(xié)手完成此活動(dòng)。教師參與此活動(dòng),并給學(xué)生以提示、啟發(fā)。在本活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注學(xué)生:①能否積極動(dòng)手參與;②能否從操作活動(dòng)中,用數(shù)學(xué)語(yǔ)言歸納、猜想出結(jié)論;③學(xué)生是否有克服困難的勇氣。
生:我們不難發(fā)現(xiàn)上圖中,第(1)個(gè)結(jié)到第(4)個(gè)結(jié)是3個(gè)單位長(zhǎng)度即AC=3;同理BC=4,AB=5.因?yàn)?2+42=52。我們圍成的三角形是直角三角形。
生:如果三角形的三邊分別是2.5cm,6cm,6.5cm.我們用尺規(guī)作圖的方法作此三角形,經(jīng)過(guò)測(cè)量后,發(fā)現(xiàn)6.5cm的邊所對(duì)的角是直角,并且2.52+62=6.52.
再換成三邊分別為4cm,7.5cm,8.5cm的三角形,目標(biāo)可以發(fā)現(xiàn)8.5cm的邊所對(duì)的角是直角,且也有42+7.52=8.52.
是不是三角形的三邊只要有兩邊的平方和等于第三邊的平方,就能得到一個(gè)直角三角形呢?
活動(dòng)3下面的三組數(shù)分別是一個(gè)三角形的三邊長(zhǎng)a,b,c
5,12,13;7,24,25;8,15,17。
(1)這三組效都滿足a2+b2=c2嗎?
。2)分別以每組數(shù)為三邊長(zhǎng)作出三角形,用量角器量一量,它們都是直角三角形嗎?
設(shè)計(jì)意圖:本活動(dòng)通過(guò)讓學(xué)生按已知數(shù)據(jù)作出三角形,并測(cè)量三角形三個(gè)內(nèi)角的度數(shù)來(lái)進(jìn)一步獲得一個(gè)三角形是直角三角形的有關(guān)邊的條件。
師生行為:學(xué)生進(jìn)一步以小組為單位,按給出的三組數(shù)作出三角形,從而更加堅(jiān)信前面猜想出的結(jié)論。
教師對(duì)學(xué)生歸納出的結(jié)論應(yīng)給予解釋,我們將在下一節(jié)給出證明.本活動(dòng)教師應(yīng)重點(diǎn)關(guān)注學(xué)生:①對(duì)猜想出的結(jié)論是否還有疑慮;②能否積極主動(dòng)的操作,并且很有耐心。
生:(1)這三組數(shù)都滿足a2+b2=c2。(2)以每組數(shù)為邊作出的三角形都是直角三角形。
師:很好,我們進(jìn)一步通過(guò)實(shí)際操作,猜想結(jié)論。
命題2如果三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2那么這個(gè)三角形是直角三角形。
同時(shí),我們也進(jìn)一步明白了古埃及人那樣做的道理.實(shí)際上,古代中國(guó)人也曾利用相似的方法得到直角,直至科技發(fā)達(dá)的今天。
勾股定理的教學(xué)反思3
一、教師我的體會(huì):
①、我根據(jù)學(xué)生實(shí)際情況認(rèn)真?zhèn)湔n這節(jié)課,書(shū)本總共兩個(gè)例題,且兩個(gè)例題都很難,如果一節(jié)課就講這兩題難題,那一方面學(xué)生的學(xué)習(xí)效率會(huì)比較低,另一方面會(huì)使學(xué)生畏難情緒增加。所以,我簡(jiǎn)化教材,使教材易于操作,讓學(xué)生易于學(xué)習(xí),有利于學(xué)生學(xué)習(xí)新知識(shí)、接受新知識(shí),降低學(xué)習(xí)難度。
把教材讀薄,
②、除了備教材外,還備學(xué)生。從教案及授課過(guò)程也可以看出,充分考慮到了學(xué)生的年齡特點(diǎn):對(duì)新事物有好奇心,但對(duì)新知識(shí)的鉆研熱情又不夠高,這樣,造成教學(xué)難度較大,為了改變這一狀況,在處理教材時(shí),把某些數(shù)學(xué)語(yǔ)言轉(zhuǎn)換成通俗文字來(lái)表達(dá),把難度大的運(yùn)用能力降低為難度稍細(xì)的理解能力,讓學(xué)生樂(lè)于面對(duì)奧妙而又有一定深度的數(shù)學(xué),樂(lè)于學(xué)習(xí)數(shù)學(xué)。
、、新課選用的例子、練習(xí),都是經(jīng)過(guò)精心挑選的,運(yùn)用性強(qiáng),貼近生活,與生活實(shí)際緊密聯(lián)系,既達(dá)到學(xué)習(xí)、鞏固新知識(shí)的目的',同時(shí),又充分展現(xiàn)出數(shù)學(xué)教學(xué)的重大特征:數(shù)學(xué)源于生活實(shí)際,又服務(wù)于生活實(shí)際。勾股定理源于生活,但同時(shí)它又能極大的為生活服務(wù)。
④、使用多媒體進(jìn)行教學(xué),使知識(shí)顯得形象直觀,充分發(fā)揮現(xiàn)代技術(shù)作用。
二、學(xué)生體會(huì):
課前,我們也去查閱了一些資料,關(guān)于勾股定理的證明以及有關(guān)的一些應(yīng)用,通過(guò)這節(jié)課,真真發(fā)現(xiàn)勾股定理真真來(lái)源于生活,我們的幾何圖形和幾何計(jì)算對(duì)于勾股定理來(lái)說(shuō)非常廣泛,而且以后更要用好它。對(duì)于勾股定理都應(yīng)用時(shí),我覺(jué)得關(guān)鍵是找到相關(guān)的三角形,并且分清直角邊或斜邊,靈活機(jī)智地進(jìn)行計(jì)算和一些推理。另外與同學(xué)間在數(shù)學(xué)課上有自主學(xué)習(xí)的機(jī)會(huì),有相互之間的討論、爭(zhēng)辯等協(xié)作的機(jī)會(huì),在合作學(xué)習(xí)的過(guò)程中共同提高我覺(jué)得都是難得的機(jī)會(huì)。鍛煉了能力,提高了思維品質(zhì),并且勾股定理的應(yīng)用中我覺(jué)得圖形很美,古代的數(shù)學(xué)家已經(jīng)有了很好的研究并作出了很大的貢獻(xiàn),現(xiàn)代的藝術(shù)家們也在各方面用到很多,同時(shí)在課堂中漸漸地培養(yǎng)了我們的數(shù)學(xué)興趣和一定的思維能力。
不過(guò)課堂上老師在最后一題的畫(huà)圖中能放一放,讓我們有時(shí)間去思考怎么畫(huà),那會(huì)更好些,自然思維也得到了發(fā)展。課上老師鼓勵(lì)我們嘗試不完善的甚至錯(cuò)誤的意見(jiàn),大膽發(fā)表自己的見(jiàn)解,體現(xiàn)了我們是學(xué)習(xí)的主人。數(shù)學(xué)課堂里充滿了智慧。
勾股定理的教學(xué)反思4
教材分析
1.勾股定理的逆定理是研究特殊三角形——直角三角形的一種判定方法,體現(xiàn)了數(shù)形結(jié)合的思想。
2.通過(guò)勾股定理與它的逆定理的學(xué)習(xí),加深了學(xué)生對(duì)性質(zhì)與判定之間辨證統(tǒng)一關(guān)系的認(rèn)識(shí)。
3. 完善了知識(shí)結(jié)構(gòu),為后繼學(xué)習(xí)打下基礎(chǔ)。
學(xué)情分析
初中生已經(jīng)具備一定的獨(dú)立思考和探索能力,并能在探索過(guò)程中形成自已的觀點(diǎn),能在傾聽(tīng)別人意見(jiàn)的過(guò)程中逐漸完善自已的想法,而且本班學(xué)生比較上進(jìn),思維活躍,愿意表達(dá)自已的見(jiàn)解,有一定的互動(dòng)互助基礎(chǔ)。
教學(xué)目標(biāo)
1.知識(shí)與技能:
(1)理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。
。2)掌握勾股定理的逆定理,并能應(yīng)用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形。
2.過(guò)程與方法
。1)通過(guò)對(duì)勾股定理的逆定理的探索,經(jīng)歷知識(shí)的發(fā)生、發(fā)展與形成過(guò)程。
(2)通過(guò)用三角形三邊的數(shù)量關(guān)系來(lái)判斷三角形的形狀,體驗(yàn)數(shù)形結(jié)合方法的應(yīng)用。
。3)通過(guò)對(duì)勾股定理的逆定理的`證明,體會(huì)數(shù)形結(jié)合方法在問(wèn)題解決中的作用,并能應(yīng)用勾股定理的逆定理來(lái)解決相關(guān)問(wèn)題。
3.情感態(tài)度
。1)通過(guò)用三角形三邊的數(shù)量關(guān)系來(lái)判斷三角形的形狀,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧與辨證統(tǒng)一的關(guān)系
。2)在探索勾股定理的逆定理的活動(dòng)中,通過(guò)一系列的富有探究性的問(wèn)題,滲透與他人交流、合作的意識(shí)和探究精神。
教學(xué)重點(diǎn)和難點(diǎn)
教學(xué)重點(diǎn):勾股定理的逆定理及起應(yīng)用
教學(xué)難點(diǎn):勾股定理的逆定理的證明
勾股定理的教學(xué)反思5
本節(jié)課為華東師大八年級(jí)上第三章第一節(jié)的內(nèi)容。本節(jié)課開(kāi)始是利用了多媒體介紹了在北京召開(kāi)的20xx年國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),其圖案為“弦圖”,激發(fā)學(xué)生的興趣。導(dǎo)入新課,是課堂教學(xué)的重要一環(huán)!昂玫拈_(kāi)始是成功的一半”,在課的起始階段,迅速集中學(xué)生的注意力,把他們思緒帶進(jìn)特定的學(xué)習(xí)情境中,激發(fā)起學(xué)生濃厚的學(xué)習(xí)興趣和強(qiáng)烈的求知欲,對(duì)這堂課教學(xué)的成敗與否起著至關(guān)重要的作用。運(yùn)用多媒體展示這一有意義的圖案,可有效地開(kāi)啟學(xué)生思維的閘門(mén),激發(fā)聯(lián)想,激勵(lì)探究,使學(xué)生的學(xué)習(xí)狀態(tài)由被動(dòng)變?yōu)橹鲃?dòng),使學(xué)生在輕松愉悅的氛圍中學(xué)到知識(shí)。
在講解勾股定理的結(jié)論時(shí),為了讓學(xué)生更好地理解和掌握勾股定理的探索過(guò)程,先讓學(xué)生自己進(jìn)行探索,然后同學(xué)進(jìn)行討論,最后上臺(tái)演示。這樣可以加深學(xué)生的參與,也讓師生間、生生間有了互動(dòng)。然后老師再利用電腦演示直角三角形中勾股定理的.探索過(guò)程。反復(fù)演示幾遍,讓學(xué)生自己感覺(jué)并最后體會(huì)到勾股定理的結(jié)論。通過(guò)動(dòng)畫(huà)演示體會(huì)到解決問(wèn)題的方法是多種多樣,使得這課的重難點(diǎn)輕易地突破,大大提高了教學(xué)效率,培養(yǎng)了學(xué)生的解決問(wèn)題的能力和創(chuàng)新能力。學(xué)生在這一過(guò)程中各顯神通,都得到了解決問(wèn)題的滿足感和自豪感。
在教學(xué)應(yīng)用勾股定理時(shí),老是運(yùn)用公式計(jì)算,學(xué)生感覺(jué)比較厭倦,為了吸引學(xué)生注意力,活躍課堂氣氛,拓寬學(xué)生思路,運(yùn)用多媒體出示了一道“智慧爺爺”出的思考題:即折竹抵地問(wèn)題。同學(xué)們一看,興趣來(lái)了。最后讓學(xué)生互相討論,就這樣讓學(xué)生在開(kāi)放自由的情況下解決了該題,同時(shí)培養(yǎng)了學(xué)生的想像力。
最后介紹了勾股定理的歷史,并且推薦了一些網(wǎng)站,讓學(xué)生下課之后進(jìn)行查閱、了解。只是為了方便學(xué)生到更廣闊的知識(shí)海洋中去尋找知識(shí)寶藏,利用網(wǎng)絡(luò)檢索相關(guān)信息,充實(shí)、豐富、拓展課堂學(xué)習(xí)資源,提供各種學(xué)習(xí)方式,讓學(xué)生學(xué)會(huì)選擇、整理、重組、再用這些更廣泛的資源。這種對(duì)網(wǎng)絡(luò)資源的重新組織,使學(xué)生對(duì)知識(shí)的需求由窄到寬,有力的促進(jìn)了自主學(xué)習(xí)。這樣學(xué)生不僅能在課堂上學(xué)習(xí)到知識(shí),還讓他們有了怎樣學(xué)習(xí)知識(shí)的方法。這就達(dá)到了新課標(biāo)新理念的預(yù)定目標(biāo)。
勾股定理的教學(xué)反思6
勾股定理應(yīng)用舉例的教學(xué)反思本節(jié)課的教學(xué)目標(biāo)很單一,就是利用勾股定理解決實(shí)際問(wèn)題。我的教學(xué)過(guò)程很簡(jiǎn)單:在“學(xué)案導(dǎo)學(xué)”中的“課前預(yù)習(xí)案”中首先安排了一個(gè)關(guān)于梯子的簡(jiǎn)單問(wèn)題讓學(xué)生利用勾股定理進(jìn)行解決,初步體會(huì)到勾股定理與我們的生活密切相關(guān)。在“課上導(dǎo)學(xué)”時(shí)用兩只螞蟻要走過(guò)最短距離吃芝麻的有趣實(shí)例作為例題,引導(dǎo)學(xué)生把看似復(fù)雜的問(wèn)題轉(zhuǎn)化用勾股定理來(lái)解決簡(jiǎn)單問(wèn)題,從而提高學(xué)生用數(shù)學(xué)的能力。
教后反思:本節(jié)課自認(rèn)為成功之處:實(shí)現(xiàn)了學(xué)習(xí)方式的轉(zhuǎn)變。以“學(xué)案”為載體,充分利用“課前預(yù)習(xí)案”、“課上導(dǎo)學(xué)案”、“課后鞏固案”的引導(dǎo)作用,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性,使學(xué)生愛(ài)學(xué)、樂(lè)學(xué)。充分體現(xiàn)了“教師角色向利于學(xué)生主動(dòng)、自主、探究學(xué)習(xí)方向轉(zhuǎn)變,讓學(xué)生實(shí)現(xiàn)地位、尊嚴(yán)、個(gè)性、興趣解放,促成師生之間民主和諧、平等合作關(guān)系”新課改精神。
數(shù)學(xué)來(lái)源于生活,數(shù)學(xué)服務(wù)于生活。從生活實(shí)際中得出數(shù)學(xué)知識(shí),再回到實(shí)際生活中加以運(yùn)用也是本節(jié)課的一個(gè)教學(xué)“亮點(diǎn)”。在本節(jié)課預(yù)習(xí)案中的梯子問(wèn)題有著學(xué)生非常熟悉的生活背景,課上部分的螞蟻吃芝麻以及課后的渡河要偏離目標(biāo)點(diǎn)的情景相對(duì)來(lái)說(shuō)也是學(xué)生比較感興趣的問(wèn)題,以此引入、深入勾股定理的應(yīng)用,使數(shù)學(xué)教學(xué)在生活情境中得以創(chuàng)新。在課堂中,我積極讓學(xué)生自己動(dòng)手剪幾個(gè)直角三角形邊長(zhǎng)為3、4、5;6、8、10;5、12、13,然后用勾股定理驗(yàn)證,激發(fā)學(xué)生的學(xué)習(xí)興趣,充分地調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性,給學(xué)生留有思考和探索的余地,讓學(xué)生能在獨(dú)立思考與合作交流中解決學(xué)習(xí)中的問(wèn)題。
在學(xué)習(xí)中,我注意到了學(xué)生的個(gè)體差異,要求不同的學(xué)生達(dá)到不同的學(xué)習(xí)水平。以小組為單位的合作學(xué)習(xí)解決了后進(jìn)生學(xué)習(xí)難的問(wèn)題,幫助他們克服了學(xué)習(xí)上的'自卑心理。同時(shí),對(duì)于一些學(xué)有余力的學(xué)生,教師也為他們提供了發(fā)展的機(jī)會(huì),以小老師的身份去教學(xué)困者,這樣既防止他們產(chǎn)生自滿情緒,又讓他們始終保持著強(qiáng)烈的求知欲望,使他們?cè)谕瓿蛇@種任務(wù)的過(guò)程中獲得更大的發(fā)展。這樣大部分學(xué)生都能在老師的幫助下完成學(xué)習(xí)任務(wù),從而增強(qiáng)了學(xué)生的學(xué)習(xí)興趣,降低了認(rèn)知難度。本節(jié)課的不足之處及改進(jìn)方法:學(xué)生在應(yīng)用勾股定理解決問(wèn)題過(guò)程中書(shū)寫(xiě)過(guò)程不夠規(guī)范和嚴(yán)謹(jǐn),11---20數(shù)的平方掌握的不好,在計(jì)算技巧方面還有在與提高和加強(qiáng)。
勾股定理的應(yīng)用范圍比較廣,學(xué)生應(yīng)用定理解決實(shí)際問(wèn)題還應(yīng)多練。教學(xué)沒(méi)有徹底放開(kāi)。回憶一下本節(jié)課的教學(xué),我感到我的教學(xué)還是沒(méi)有徹底放開(kāi),和新的課程理念的要求存在著差距。如教學(xué)設(shè)計(jì)中的問(wèn)題都是教者提出的,“學(xué)案導(dǎo)學(xué)”中的一切活動(dòng)都是在我精心安排下進(jìn)行的,還是有教師牽著學(xué)生鼻子走的做法。
勾股定理的教學(xué)反思7
三角學(xué)里有一個(gè)很重要的定理,我國(guó)稱它為勾股定理,又叫商高定理。因?yàn)椤吨荀滤憬?jīng)》提到,商高說(shuō)過(guò)"勾三股四弦五"的話。
實(shí)際上,它是我國(guó)古代勞動(dòng)人民通過(guò)長(zhǎng)期測(cè)量經(jīng)驗(yàn)發(fā)現(xiàn)的。他們發(fā)現(xiàn):當(dāng)直角三角形短的直角邊(勾)是3,長(zhǎng)的直角邊(股)是4的時(shí)候,直角的對(duì)邊(弦)正好是5。而。
這是勾股定理的一個(gè)特例。以后又通過(guò)長(zhǎng)期的測(cè)量實(shí)踐,發(fā)現(xiàn)只要是直角三角形,它的三邊都有這么個(gè)關(guān)系。即
與它們相當(dāng)?shù)恼麛?shù)有許多組
《周髀算經(jīng)》上還說(shuō),夏禹在實(shí)際測(cè)量中已經(jīng)初步運(yùn)用這個(gè)定理。這本書(shū)上還記載,有個(gè)叫陳子的數(shù)學(xué)家,應(yīng)用這個(gè)定理來(lái)測(cè)量太陽(yáng)的高度、太陽(yáng)的直徑和天地的長(zhǎng)闊等。
5000年前的埃及人,也知道這一定理的特例,也就是勾3、股4、弦5,并用它來(lái)測(cè)定直角。以后才漸漸推廣到普遍的情況。
金字塔的底部,四正四方,正對(duì)準(zhǔn)東西南北,可見(jiàn)方向測(cè)得很準(zhǔn),四角又是嚴(yán)格的直角。而要量得直角,當(dāng)然可以采用作垂直線的方法,但是如果將勾股定理反過(guò)來(lái),也就是說(shuō):只要三角形的三邊是3、4、5,或者符合的公式,那么弦邊對(duì)面的'角一定是直角。
到了公元前540年,希臘數(shù)學(xué)家畢達(dá)哥拉斯注意到了直角三角形三邊是3、4、5,或者是5、12、13的時(shí)候,有這么個(gè)關(guān)系:,。
他想:是不是所有直角三角形的三邊都符合這個(gè)規(guī)律?反過(guò)來(lái),三邊符合這個(gè)規(guī)律的,是不是直角三角形?
他搜集了許多例子,結(jié)果都對(duì)這兩個(gè)問(wèn)題作了肯定的回答。他高興非常,殺了一百頭牛來(lái)祝賀。
以后,西方人就將這個(gè)定理稱為畢達(dá)哥拉斯定教學(xué)反思《《勾股定理》教學(xué)反思》一文
勾股定理的教學(xué)反思8
本節(jié)課主要通過(guò)勾股定理的證明探索,使學(xué)生進(jìn)一步理解和掌握勾股定理。通過(guò)利用質(zhì)疑、拼圖觀察、思考、猜想、推理論證這一過(guò)程,培養(yǎng)學(xué)生探求未知數(shù)學(xué)知識(shí)的能力和方法,培養(yǎng)學(xué)生求異思維能力、認(rèn)知能力、觀察能力和獨(dú)立實(shí)踐能力。學(xué)生獨(dú)立或分組進(jìn)行拼圖實(shí)驗(yàn),教師組織學(xué)生在實(shí)驗(yàn)過(guò)程中發(fā)現(xiàn)的有價(jià)值的實(shí)驗(yàn)結(jié)果進(jìn)行交流和展示。本節(jié)課的過(guò)程由激趣、質(zhì)疑、實(shí)驗(yàn)、求異、探索、交流、延伸組成。
本節(jié)課的成功之處:
1、創(chuàng)設(shè)情景,實(shí)例導(dǎo)入,激發(fā)學(xué)生的學(xué)習(xí)熱情。
2、由于實(shí)現(xiàn)了教師角色的轉(zhuǎn)變,教法的創(chuàng)新,師生的平等,氣氛的活躍,學(xué)生積極參加。
3、面向全體學(xué)生,以人為本的教育理念落實(shí)到位。整節(jié)課都是學(xué)生自主實(shí)驗(yàn)、自主探索,自主完成由形到數(shù)的轉(zhuǎn)化。學(xué)生勇于上講臺(tái)展示研究成果,教師只是起到組織、引導(dǎo)作用。
4、通過(guò)學(xué)生動(dòng)手實(shí)驗(yàn),上臺(tái)發(fā)言,展示成果,體驗(yàn)了成功的喜悅。學(xué)生的自信心得到培養(yǎng),個(gè)性得到張揚(yáng)。通過(guò)當(dāng)場(chǎng)展示,讓學(xué)生體會(huì)到動(dòng)手實(shí)踐在解決數(shù)學(xué)問(wèn)題中的重要性,同時(shí)也讓學(xué)生體會(huì)到用面積來(lái)驗(yàn)證公式的直觀性、普遍性。
5、學(xué)生的研究成果極大地豐富了學(xué)生對(duì)勾股定理的證明的認(rèn)識(shí),學(xué)生從中獲得利用已知的知識(shí)探求數(shù)學(xué)知識(shí)的能力和方法。這對(duì)學(xué)生今后的學(xué)習(xí)和將來(lái)的發(fā)展是大有裨益的。同時(shí)驗(yàn)證勾股定理的證明的探究,使學(xué)生形成一種等積代換的思想,為今后的學(xué)習(xí)奠定基礎(chǔ)。
本節(jié)課的不足之處及改進(jìn)思路:
1、小部分能力基礎(chǔ)和能力都比較差的學(xué)生在探索過(guò)程中無(wú)所事事,因此教師應(yīng)該在課前對(duì)不同層次的`學(xué)生提出不同的要求,讓每個(gè)學(xué)生多清楚地知道這節(jié)課自己的任務(wù)是什么。
2、本節(jié)課拼圖驗(yàn)證的方法是以前學(xué)生很少接觸的,所以在探索過(guò)程中很多學(xué)生都顯得有些吃力。所以教師在講方法一時(shí),應(yīng)該先介紹這種證明方法以及思路,讓學(xué)生模仿第一種方法的基礎(chǔ)上,能輕松地總結(jié)出第二種方法,從而產(chǎn)生去探索更多方法的興趣和動(dòng)力,有利于學(xué)生的數(shù)學(xué)思維的提升。
3、對(duì)學(xué)生的人文教育和愛(ài)國(guó)教育不夠。很多學(xué)生在探索過(guò)程中遇到困難時(shí),選擇放棄或等別人的答案。教師此時(shí)應(yīng)該注意引導(dǎo)學(xué)生要勇于克服困難,主動(dòng)進(jìn)行探索,提高了自身的推理能力和創(chuàng)新精神。同時(shí)教師也要不斷滲透愛(ài)國(guó)教育,培養(yǎng)學(xué)生的民族自豪感和愛(ài)國(guó)熱情。
在我們的數(shù)學(xué)教學(xué)中,活動(dòng)課是不可忽視的內(nèi)容。在這個(gè)探索的過(guò)程中,學(xué)生絕大多數(shù)是不會(huì)創(chuàng)造或發(fā)明什么的,這是一個(gè)素質(zhì)的表現(xiàn)和培養(yǎng)過(guò)程。學(xué)生得到什么結(jié)果是次要的,重要的是使學(xué)生的素質(zhì)和能力得到培養(yǎng)。這是中學(xué)數(shù)學(xué)活動(dòng)課的價(jià)值取向。
勾股定理的教學(xué)反思9
這次展示課,我上的是八年級(jí)數(shù)學(xué)課《17.2勾股定理的逆定理》,我是根據(jù)“五步三查”課堂模式來(lái)設(shè)計(jì)“導(dǎo)學(xué)案”和組織教學(xué)的。 這次課相對(duì)于過(guò)去基礎(chǔ)上的課堂改革是完全不同的課,其進(jìn)步之處之一是規(guī)范了課堂的結(jié)構(gòu),明確了課堂模式“五步三查”,操作上更能心中有數(shù)。進(jìn)步之二是發(fā)揮學(xué)生的積極性方式與手段更多些,“老師需要什么?就評(píng)價(jià)什么”,進(jìn)行了有益的嘗試,將評(píng)價(jià)納入整個(gè)課堂,如何通過(guò)開(kāi)展小組的評(píng)比與競(jìng)賽調(diào)動(dòng)學(xué)生積極性及學(xué)習(xí)氛圍積累了經(jīng)驗(yàn)。進(jìn)步之三是“導(dǎo)學(xué)案”的編寫(xiě)上更適和學(xué)生,更有利于對(duì)課堂的指導(dǎo)。進(jìn)步之四是課堂效率和課堂效果更好。進(jìn)步之五學(xué)生的.主體作用得到了真正的體現(xiàn)。進(jìn)步之六是課堂不僅成了學(xué)習(xí)知識(shí)的地方,更是增進(jìn)情感、培養(yǎng)能力的地方。
這次展示課也有待改進(jìn)的地方,其一是“五步三查”模式操作細(xì)節(jié)不清楚,對(duì)整個(gè)操作流程理解不到位,導(dǎo)致整個(gè)課堂有些亂,因不能多講,又不放心學(xué)生學(xué)。其二是學(xué)生的能力培養(yǎng)還應(yīng)下大功夫,過(guò)去是以老師講為主,學(xué)生只是聽(tīng)記,現(xiàn)在要他們自學(xué)、討論,同學(xué)們還不習(xí)慣,導(dǎo)致課堂有些沉悶。其三是時(shí)間緊,教學(xué)任務(wù)完不成,課堂的知識(shí)掌握度、能力目標(biāo)達(dá)成度較低。其四是“五步三查”各細(xì)節(jié)的科學(xué)性、有效性落實(shí),有許多細(xì)節(jié)的落實(shí)與協(xié)調(diào)有待深化,如如何評(píng)價(jià)?如何有效利用評(píng)價(jià)得分?如何有效獨(dú)學(xué)?其五是“導(dǎo)學(xué)案”如何更科學(xué)編制?體現(xiàn)分層同時(shí)又能更有利于指導(dǎo)學(xué)生的學(xué),也有利于指導(dǎo)教師的教。其六更主要的是老師的觀念,樹(shù)立學(xué)生為主體的觀念,將學(xué)生發(fā)展落實(shí)到教育教學(xué)各環(huán)節(jié)這才是根本。勇于變革和創(chuàng)新,積極研究和實(shí)踐才能保障我們的課堂改革更順利推進(jìn)。雖然存在這樣多,或更多的問(wèn)題,但對(duì)其前景我們每一個(gè)人都充滿了信心,我們相信只有這樣做才能真正達(dá)到教育的目標(biāo)。
勾股定理的教學(xué)反思10
“教師教,學(xué)生聽(tīng),教師問(wèn),學(xué)生答,教師出題,學(xué)生做”的傳統(tǒng)教學(xué)摸模式,已嚴(yán)重阻礙了現(xiàn)代教育的發(fā)展。這種教育模式,不但無(wú)法培養(yǎng)學(xué)生的實(shí)踐能力,而且會(huì)造成機(jī)械的學(xué)習(xí)知識(shí),形成懶惰、空洞的'學(xué)習(xí)態(tài)度,形成數(shù)學(xué)的呆子,就像有的大學(xué)畢業(yè)生都不知道1平方米到底有多大?因此,《新課標(biāo)》要求老師一定要改變角色,變主角為配角,把主動(dòng)權(quán)交給學(xué)生,讓學(xué)生提出問(wèn)題,動(dòng)手操作,小組討論,合作交流,把學(xué)生想到的,想說(shuō)的想法和認(rèn)識(shí)都讓他們盡情地表達(dá),然后教師再進(jìn)行點(diǎn)評(píng)與引導(dǎo),這樣做會(huì)有許多意外的收獲,而且能充分發(fā)揮挖掘每個(gè)學(xué)生的潛能,久而久之,學(xué)生的綜合能力就會(huì)與日劇增。上這節(jié)課前教師可以給學(xué)生布置任務(wù):查閱有關(guān)勾股定理的資料,提前兩三天由幾位學(xué)生匯總(教師可適當(dāng)指導(dǎo))。這樣可使學(xué)生在上這節(jié)課前就對(duì)勾股定理歷史背景有全面的理解,從而使學(xué)生認(rèn)識(shí)到勾股定理的重要性,學(xué)習(xí)勾股定理是非常必要的,激發(fā)學(xué)生的學(xué)習(xí)興趣,對(duì)學(xué)生也是一次愛(ài)國(guó)主義教育,培養(yǎng)民族自豪感,激勵(lì)他們奮發(fā)向上,同時(shí)培養(yǎng)學(xué)生的自學(xué)能力及歸類總結(jié)能力。
勾股定理的教學(xué)反思11
勾股定理的探索和證明蘊(yùn)含豐富的數(shù)學(xué)思想和研究方法,是培養(yǎng)學(xué)生思維品質(zhì)的載體。它對(duì)數(shù)學(xué)發(fā)展具有重要作用。勾股定理是一壇陳年佳釀,品之芬芳,余味無(wú)窮,以簡(jiǎn)潔優(yōu)美的形式,豐富深刻的內(nèi)涵刻畫(huà)了自然界和諧統(tǒng)一關(guān)系,是數(shù)形結(jié)合的優(yōu)美典范。教學(xué)中我以教師為主導(dǎo),以學(xué)生為主體,以知識(shí)為載體,以培養(yǎng)能力為重點(diǎn)。為學(xué)生創(chuàng)設(shè)“做數(shù)學(xué)、玩數(shù)學(xué)”的教學(xué)情境,讓學(xué)生從“學(xué)會(huì)”到“會(huì)學(xué)”,從“會(huì)學(xué)”到“樂(lè)學(xué)”。
1、查資料
我讓學(xué)生課前查閱有關(guān)勾股定理資料,學(xué)生對(duì)勾股定理歷史背景有初步了解,學(xué)生充滿自信迎接新知識(shí)《勾股定理》學(xué)習(xí)的挑戰(zhàn)。
學(xué)生查得資料:世界許多科學(xué)家尋找“外星人”。1820年,德國(guó)數(shù)學(xué)家高斯提出,在西伯利亞森林伐出直角三角形空地,在空地種上麥子,以三角形三邊為邊種上三片正方形松樹(shù)林,如果有外星人路過(guò)地球附近,看到這個(gè)巨大數(shù)學(xué)圖形,便知道:這個(gè)星球上有智慧生命。我國(guó)數(shù)學(xué)家華羅庚提出:要溝通兩個(gè)不同星球的信息交往,最好利用太空飛船帶上這個(gè)圖形,并發(fā)射到太空中去。
2、講故事
畢達(dá)哥拉斯是古希臘數(shù)學(xué)家。相傳2500年前,畢達(dá)哥拉斯在朋友家做客,發(fā)現(xiàn)朋友家用地磚鋪成地面反映了直角三角形三邊的數(shù)量關(guān)系。
我講畢達(dá)哥拉斯故事,提出問(wèn)題。學(xué)生獨(dú)立思考,提出猜想。我配合演示,使問(wèn)題形象、具體。教學(xué)活動(dòng)從“數(shù)小方格”開(kāi)始,起點(diǎn)低、趣味性濃。學(xué)生在偉人故事中進(jìn)行數(shù)學(xué)問(wèn)題的討論和探索。平淡無(wú)奇現(xiàn)象中隱藏深刻道理。
3、提問(wèn)題
“問(wèn)題是思維的起點(diǎn)”,一段生動(dòng)有趣的動(dòng)畫(huà),點(diǎn)燃學(xué)生求知欲,以景激情,以情激思,引領(lǐng)學(xué)生進(jìn)入學(xué)習(xí)情境,學(xué)生帶著問(wèn)題進(jìn)課堂。
例如:一架長(zhǎng)為10m的梯子AB斜靠在墻上,若梯子的頂端距地面的垂直距離為8m。如果梯子的頂端下滑2m,那么它的底端是否也滑動(dòng)2m?
盡管學(xué)生講的不完全正確,但培養(yǎng)了學(xué)生運(yùn)用數(shù)學(xué)語(yǔ)言進(jìn)行抽象、概括的`能力,學(xué)生經(jīng)歷了應(yīng)用勾股定理解決問(wèn)題的思考過(guò)程,學(xué)生增長(zhǎng)了知識(shí),學(xué)生增長(zhǎng)了智慧。
例如:《九章算術(shù)》記載有趣問(wèn)題:有一個(gè)水池,水面是邊長(zhǎng)為10尺的正方形,在水池的中央有一根新生蘆葦,它高出水面1尺,若把這根蘆葦拉向岸邊,它的頂端恰好到達(dá)岸邊的水面,問(wèn)這個(gè)水池深度和這根蘆葦長(zhǎng)度各是多少?
我通過(guò)“著名問(wèn)題”探究,讓學(xué)生了解勾股定理的古老與神奇。問(wèn)題本身具有極大挑戰(zhàn)性,激發(fā)了學(xué)生強(qiáng)烈求知欲,激發(fā)了學(xué)生探究知識(shí)的愿望。學(xué)生討論交流,發(fā)現(xiàn)用代數(shù)觀點(diǎn)證明幾何問(wèn)題的思路。我配以演示,分散了難點(diǎn),培養(yǎng)了學(xué)生發(fā)散思維、探究數(shù)學(xué)問(wèn)題的能力。
4、講證法
我拋磚引玉介紹趙爽弦圖,趙爽用幾何圖形截、割、拼、補(bǔ)證明代數(shù)恒等關(guān)系,具有嚴(yán)密性,直觀性,是中國(guó)古代以形證數(shù)、形數(shù)統(tǒng)一的典范。趙爽指出:四個(gè)全等直角三角形拼成一個(gè)中空的正方形,大正方形面積等于小正方形面積與4個(gè)三角形面積和。 “趙爽弦圖”表現(xiàn)了我國(guó)古代人對(duì)數(shù)學(xué)的鉆研精神和聰明才智,它是我國(guó)數(shù)學(xué)的驕傲。這個(gè)圖案被選為20xx年北京召開(kāi)的國(guó)際數(shù)學(xué)家大會(huì)會(huì)徽。
隨后展示了美國(guó)總統(tǒng)證法。1876年4月1日,美國(guó)伽菲爾德在《新英格蘭教育日志》發(fā)表勾股定理的證法。1881年,伽菲爾德就任美國(guó)總統(tǒng),為了紀(jì)念他直觀、簡(jiǎn)捷、易懂、明了的證明,這一證法被稱為“總統(tǒng)”證法。我感覺(jué)學(xué)生是小小發(fā)明家。學(xué)生在建構(gòu)知識(shí)的同時(shí),欣賞作品享受成功的喜悅。
5、巧設(shè)計(jì)
練習(xí)設(shè)計(jì)我立足鞏固,著眼發(fā)展,兼顧差異,滿足學(xué)生渴望發(fā)展要求。練習(xí)有基礎(chǔ)訓(xùn)練,變式訓(xùn)練,中考試題,引出勾股樹(shù),學(xué)生驚嘆奇妙的數(shù)學(xué)美。課內(nèi)知識(shí)向課外知識(shí)延伸,打開(kāi)了學(xué)生思路,給學(xué)生提供了廣闊空間。數(shù)學(xué)教學(xué)變得生機(jī)勃勃,學(xué)生喜歡數(shù)學(xué),熱愛(ài)數(shù)學(xué)。
我讓學(xué)生講解搜集資料,豐富了學(xué)生背景知識(shí),體現(xiàn)了自主學(xué)習(xí)方式。我對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育,激發(fā)了學(xué)生民族自豪感和奮發(fā)向上學(xué)習(xí)精神。我讓學(xué)生欣賞豐富多彩的數(shù)學(xué)文化,展示五彩斑斕的文化背景,激發(fā)了學(xué)生的愛(ài)國(guó)熱情。
6、善總結(jié)
課堂小結(jié)是對(duì)教學(xué)內(nèi)容的回顧,是對(duì)數(shù)學(xué)思想、方法的總結(jié)。我強(qiáng)調(diào)重點(diǎn)內(nèi)容,注重知識(shí)體系的形成,培養(yǎng)了學(xué)生反思習(xí)慣。
我還想對(duì)同學(xué)們說(shuō):牛頓——從蘋(píng)果落地最終確立了萬(wàn)有引力定律,我們——從朝夕相處的三角板發(fā)現(xiàn)了勾股定理,雖然兩者尚不可同日而語(yǔ),但探索和發(fā)現(xiàn)——終有價(jià)值,也許就在身邊,也許就在眼前,還隱藏著無(wú)窮的“萬(wàn)有引力定律”和“勾股定理”……
祝愿同學(xué)們,修得一個(gè)用數(shù)學(xué)思維思考世界的頭腦,練就一雙用數(shù)學(xué)視角觀察世界的眼睛,開(kāi)啟新的探索——發(fā)現(xiàn)平凡中的不平凡之謎……
勾股定理的教學(xué)反思12
我國(guó)是最早了解勾股定理的國(guó)家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個(gè)直角,如果勾(短直角邊)等于三,股(長(zhǎng)直角邊)等于四,那么弦等于五。即“勾三、股四、弦五”。它被記載于我國(guó)古代著名的數(shù)學(xué)著作《周髀算經(jīng)》中,在這本書(shū)的另一處,還記載了勾股定理的一般形式。中國(guó)古代的幾何學(xué)家研究幾何是為了實(shí)用,是唯用是尚的。在講完《勾股定理逆定理》這節(jié)課后,我的反思如下:
本節(jié)課的教學(xué)目標(biāo)是:在掌握了勾股定理的基礎(chǔ)上,讓學(xué)生如何從三邊的關(guān)系來(lái)判定一個(gè)三角形是否為直角三角形.即:勾股定理的逆定理。
勾股定理的逆定理的教學(xué)設(shè)計(jì)說(shuō)明:本教教學(xué)設(shè)計(jì)是圍繞勾股定理的逆定理的證明與應(yīng)用來(lái)展開(kāi),結(jié)合新課標(biāo)的要求,根據(jù)我班學(xué)生的認(rèn)知結(jié)構(gòu)與教材地位為了達(dá)到本節(jié)課的教學(xué)目標(biāo),我做了以下設(shè)計(jì)(也是成功之處):
一、創(chuàng)設(shè)情境,提出猜想達(dá)到直觀性的教學(xué)要求。讓幾個(gè)學(xué)生要全班同學(xué)前面做一個(gè)“數(shù)學(xué)實(shí)驗(yàn)”,三條分別為:3,4,5的三角形是一個(gè)直角三角形。第二步驟是讓學(xué)生畫(huà)已知三邊的一定長(zhǎng)度的三角形,判斷是不是直角三角形,并分析三邊滿足什么關(guān)系條件,同時(shí),引導(dǎo)學(xué)生從特殊到一般提出猜想。
二、將教學(xué)內(nèi)容精簡(jiǎn)化.考慮到我所教班級(jí)的學(xué)生認(rèn)識(shí)水平,做了如下教學(xué)設(shè)計(jì):⑴將教學(xué)目標(biāo)定為讓學(xué)生掌握勾股定理的逆定理.以及逆定理的應(yīng)用,而對(duì)于本課中逆定理的證明.以及其探究都放在一下節(jié)課再進(jìn)行講解.⑵對(duì)于本課中所出現(xiàn)了的逆定理的定義,及其真假性的判斷也簡(jiǎn)單化.本節(jié)課也不詳細(xì)講.本節(jié)課的的重點(diǎn)放在掌握勾股定理的.逆定理,及其應(yīng)用.從課堂效果來(lái)看,這樣的教學(xué)設(shè)計(jì)是合理的,學(xué)生較好的掌握了勾股定理的逆定理,所以取得了良好的課堂效果。
三、應(yīng)用訓(xùn)練,鞏固新知為了鞏固新知,靈活運(yùn)用所學(xué)知識(shí)解決相應(yīng)問(wèn)題,提高學(xué)生的分析解題能力,基于對(duì)我班的學(xué)情分析,為了讓學(xué)生都能動(dòng)起手做,學(xué)案的設(shè)計(jì)上做了很多腳手架,目的就是讓學(xué)生能夠按照腳手架的步驟一步步完成,最終也形成了解題的“操作性”。此外,腳手架的設(shè)置對(duì)我們的中下水平的學(xué)生是很多幫助的.從課堂上看,他們也能在腳手架的幫助下,完成一定的題目中,而如果沒(méi)有的話,這部分學(xué)生對(duì)一些基本的題都會(huì)束手無(wú)策.
四、實(shí)行分層教學(xué),讓不同水平的學(xué)生在同一課堂都能學(xué)好,為此,我設(shè)計(jì)了三個(gè)層次的問(wèn)題,以達(dá)到分層教學(xué)目標(biāo):第一層次是讓學(xué)生直接運(yùn)用定理判斷三角形是否是直角三角形,掌握定理基本運(yùn)用;第二層次是強(qiáng)調(diào)已知三角形三邊長(zhǎng)或三邊關(guān)系,就有意識(shí)的判斷三角形是否是直角三角形,這樣既鞏固了勾股定理的逆定理的應(yīng)用,又為下一個(gè)層次做好了鋪墊;第三層次是靈活運(yùn)用勾股定理與逆定理解決圖形面積的計(jì)算問(wèn)題.根據(jù)學(xué)生原有的認(rèn)知結(jié)構(gòu),讓學(xué)生更好地體會(huì)分割的思想.設(shè)計(jì)的題型前后呼應(yīng),使知識(shí)有序推進(jìn),有助于學(xué)生的理解和掌握;讓學(xué)生通過(guò)合作、交流、反思、感悟的過(guò)程,激發(fā)學(xué)生探究新知的興趣,感受探索、合作的樂(lè)趣,并從中獲得成功的體驗(yàn).真正體現(xiàn)學(xué)生是學(xué)習(xí)的主人.。將目標(biāo)分層后,我設(shè)計(jì)的學(xué)案里的題目也是相應(yīng)的進(jìn)行了分層設(shè)計(jì),滿足不同層次的學(xué)生的做題要求,達(dá)到鞏固課堂知識(shí)的目的。最后,布置作業(yè),也是分層布置的,分為三層,對(duì)應(yīng)不同的學(xué)生,讓他們的作業(yè)都在他們的能力范圍。
誠(chéng)然,這節(jié)課也存在許多不足第一、新課導(dǎo)入部分:存在如下值得改進(jìn)的地方:①?gòu)?fù)習(xí)舊知部分,復(fù)習(xí)勾股定理的內(nèi)容應(yīng)用了填空的形式,這個(gè)形式不是最佳的.因?yàn)閷W(xué)生書(shū)寫(xiě)勾股定理耗時(shí),既使書(shū)寫(xiě)出來(lái),復(fù)習(xí)效果也不太好。最佳的應(yīng)該是以簡(jiǎn)單的題目形式來(lái)復(fù)習(xí)勾股定理.這樣快而有效;②如何從復(fù)習(xí)勾股定理中巧妙的切入本課的主題,過(guò)渡語(yǔ)的設(shè)置,應(yīng)該將過(guò)渡語(yǔ)言簡(jiǎn)單明了,可設(shè)計(jì)成:怎么從邊的關(guān)系來(lái)判斷一個(gè)三角形是直角三角形呢?這就是本節(jié)課要學(xué)習(xí)的內(nèi)容.③導(dǎo)入部分的課時(shí)分配估計(jì)不足,顯得冗長(zhǎng),也一定程度上造成后面的教學(xué)時(shí)間緊張。應(yīng)該對(duì)導(dǎo)入部分的時(shí)效再進(jìn)行分析簡(jiǎn)化。
第二存在的問(wèn)題是:
。1)腳手架設(shè)計(jì)的太多,本節(jié)課有一定的腳手架是合適的,太多了,反而不利于學(xué)生自己的書(shū)寫(xiě)規(guī)范性,過(guò)程的掌握等,
。2)練習(xí)題題量過(guò)大,本節(jié)課的練習(xí)題大部分都是重復(fù)一些基本的操作,沒(méi)有必要太多簡(jiǎn)單的題目,可以適當(dāng)去掉.對(duì)于數(shù)字的設(shè)計(jì)可以更加科學(xué)化一點(diǎn),應(yīng)該讓學(xué)生方便運(yùn)算和節(jié)省時(shí)間.此外,對(duì)于層次較要的同學(xué)來(lái)說(shuō),應(yīng)該設(shè)計(jì)更多一點(diǎn)綜合性的題目。適當(dāng)?shù)脑黾右恍┨岣哳},以滿足這一層次的學(xué)生的學(xué)習(xí)練習(xí)要求.
在備每一節(jié)課中,對(duì)于課堂的每一個(gè)細(xì)節(jié),第一刻鐘,第一個(gè)教學(xué)設(shè)計(jì)的思考都無(wú)不直接影響著你的這一節(jié)課,影響著你的課堂效果。靜心思考,反思整個(gè)過(guò)程是一種全新的收獲,也是全新的開(kāi)始,讓自己能夠重新起步,向前。
勾股定理的教學(xué)反思13
在講解勾股定理的結(jié)論時(shí),為了讓學(xué)生更好地理解和掌握勾股定理的探索過(guò)程,先讓學(xué)生自己進(jìn)行探索,然后同學(xué)進(jìn)行討論,最后上臺(tái)演示。這樣可以加深學(xué)生的參與,也讓師生間、生生間有了互動(dòng)。然后老師再利用電腦演示直角三角形中勾股定理的探索過(guò)程。反復(fù)演示幾遍,讓學(xué)生自己感覺(jué)并最后體會(huì)到勾股定理的結(jié)論。通過(guò)動(dòng)畫(huà)演示體會(huì)到解決問(wèn)題的方法是多種多樣,使得這課的重難點(diǎn)輕易地突破,大大提高了教學(xué)效率,培養(yǎng)了學(xué)生的解決問(wèn)題的能力和創(chuàng)新能力。學(xué)生在這一過(guò)程中各顯神通,都得到了解決問(wèn)題的滿足感和自豪感。
在教學(xué)應(yīng)用勾股定理時(shí),老是運(yùn)用公式計(jì)算,學(xué)生感覺(jué)比較厭倦,為了吸引學(xué)生注意力,活躍課堂氣氛,拓寬學(xué)生思路,運(yùn)用多媒體出示了一道“智慧爺爺”出的思考題:即折竹抵地問(wèn)題。同學(xué)們一看,興趣來(lái)了。最后讓學(xué)生互相討論,就這樣讓學(xué)生在開(kāi)放自由的情況下解決了該題,同時(shí)培養(yǎng)了學(xué)生的想像力。
最后介紹了勾股定理的歷史,并且推薦了一些網(wǎng)站,讓學(xué)生下課之后進(jìn)行查閱、了解。只是為了方便學(xué)生到更廣闊的知識(shí)海洋中去尋找知識(shí)寶藏,利用網(wǎng)絡(luò)檢索相關(guān)信息,充實(shí)、豐富、拓展課堂學(xué)習(xí)資源,提供各種學(xué)習(xí)方式,讓學(xué)生學(xué)會(huì)選擇、整理、重組、再用這些更廣泛的資源。這種對(duì)網(wǎng)絡(luò)資源的重新組織,使學(xué)生對(duì)知識(shí)的需求由窄到寬,有力的促進(jìn)了自主學(xué)習(xí)。這樣學(xué)生不僅能在課堂上學(xué)習(xí)到知識(shí),還讓他們有了怎樣學(xué)習(xí)知識(shí)的方法。這就達(dá)到了新課標(biāo)新理念的預(yù)定目標(biāo)。
數(shù)學(xué)有與其他學(xué)科不同的特點(diǎn),自然科學(xué)常發(fā)生新理論代替舊理論的情形,但數(shù)學(xué)不會(huì)如此。數(shù)學(xué)學(xué)習(xí)是數(shù)學(xué)發(fā)展史的縮影,是一個(gè)累進(jìn)過(guò)程。勾股定理是人類幾千年的文化遺產(chǎn),是經(jīng)典的定理,擁有科學(xué)簡(jiǎn)潔的數(shù)學(xué)語(yǔ)言。而數(shù)學(xué)教學(xué)的核心不是知識(shí)本身,而是數(shù)學(xué)的思維方式。認(rèn)識(shí)是個(gè)人獨(dú)特的構(gòu)造結(jié)果,人的思維活動(dòng)有強(qiáng)烈的個(gè)性特征。每個(gè)學(xué)生都有自己的生活背景、家庭環(huán)境,這種特定的'文化氛圍,導(dǎo)致不同的學(xué)生有不同的思維方式和解決問(wèn)題的策略。學(xué)生已有豐富的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),特別是運(yùn)用數(shù)學(xué)解決問(wèn)題的策略。學(xué)生只有用自己創(chuàng)造與體驗(yàn)的方法來(lái)學(xué)習(xí)數(shù)學(xué),才能真正地掌握數(shù)學(xué)。因而數(shù)學(xué)教學(xué)要展現(xiàn)數(shù)學(xué)的思維過(guò)程,要學(xué)生領(lǐng)會(huì)和實(shí)現(xiàn)數(shù)學(xué)化,自己去“發(fā)現(xiàn)”結(jié)果。這一課的學(xué)習(xí)就主要通過(guò)讓學(xué)生自主地探索知識(shí),從而將其轉(zhuǎn)化為自己的,真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學(xué)習(xí)。這堂課將信息技術(shù)融入利于創(chuàng)設(shè)教學(xué)環(huán)境,教學(xué)模式將從以教師講授為主轉(zhuǎn)為以學(xué)生動(dòng)腦動(dòng)手自主研究、小組學(xué)習(xí)討論交流為主,把數(shù)學(xué)課堂轉(zhuǎn)為“數(shù)學(xué)實(shí)驗(yàn)室”,學(xué)生通過(guò)自己的活動(dòng)得出結(jié)論、使創(chuàng)新精神與實(shí)踐能力得到了發(fā)展。
勾股定理的教學(xué)反思14
對(duì)于“勾股定理的應(yīng)用”的反思和小結(jié)有以下幾個(gè)方面:
1、課前準(zhǔn)備不充分:
基礎(chǔ)題中是一些由正方形和直角三角形拼合而成的圖形(與希臘郵票設(shè)計(jì)原理相同),其中兩個(gè)正方形的面積分別是14和18,求最大的正方形的面積。
分析:由勾股定理結(jié)論:直角三角形中兩直角邊的平方和等于斜邊的平方。
其實(shí)質(zhì)即以直角三角形兩直角邊為邊長(zhǎng)的兩個(gè)正方形面積之和等于以斜邊為邊長(zhǎng)的正方形的面積。但學(xué)生竟然不知道。其二是課件準(zhǔn)備不充分,其中有一道例題的'答案是跟著例題同時(shí)出現(xiàn)的,再去修改,又浪費(fèi)了一點(diǎn)時(shí)間。其三,用面積法求直角三角形的高,我認(rèn)為是一個(gè)非常簡(jiǎn)單的數(shù)學(xué)問(wèn)題,但在實(shí)際教學(xué)中,發(fā)現(xiàn)很多學(xué)生仍然很難理解,說(shuō)明我在備課時(shí)備學(xué)生不充分,沒(méi)有站在學(xué)生的角度去考慮問(wèn)題。
2、課堂上的語(yǔ)言應(yīng)該簡(jiǎn)練。這是我上課的最大弱點(diǎn),我不敢放手讓學(xué)生去獨(dú)立思考問(wèn)題,會(huì)去重復(fù)題目意思,實(shí)際上不需要的,可以留時(shí)間讓學(xué)生去獨(dú)立思考。教師是無(wú)法代替學(xué)生自己的思考的,更不能代替幾十個(gè)有差異的學(xué)生的思維。課堂上老師放一放,學(xué)生得到的更多,老師放多少,學(xué)生就有多大的自主發(fā)展的空間。但這里的“放多少”是一門(mén)藝術(shù),我要好好向老教師學(xué)習(xí)!
3、鼓勵(lì)學(xué)生的藝術(shù)。教師要鼓勵(lì)學(xué)生嘗試并尊重他們不完善的甚至錯(cuò)誤的意見(jiàn),經(jīng)常鼓勵(lì)他們大膽說(shuō)出自己的想法,大膽發(fā)表自己的見(jiàn)解,真正體現(xiàn)出學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人。
4、啟發(fā)學(xué)生的技巧有待提高。啟發(fā)學(xué)生也是一門(mén)藝術(shù),我的課堂上有點(diǎn)啟而不發(fā)。課堂上應(yīng)該多了解學(xué)生。
勾股定理的教學(xué)反思15
從內(nèi)容上看勾股定理只有一句話:"兩直角邊的平方和等于斜邊的平方",但教材安排了三個(gè)課時(shí),從教學(xué)目標(biāo)上分析總結(jié):
。ㄒ唬┍竟(jié)課在知識(shí)技能上要求掌握勾股定理的內(nèi)容,并能用勾股定理解決一些實(shí)際問(wèn)題;
。ǘ┰谶^(guò)程和方法上
1。讓學(xué)經(jīng)歷探究、測(cè)量、拼圖、發(fā)現(xiàn)、驗(yàn)證應(yīng)用的過(guò)程,讓學(xué)生感受數(shù)形結(jié)合、轉(zhuǎn)化和從特殊到一般的數(shù)學(xué)思想。
2。通過(guò)動(dòng)手操作、小組合作、共同思考探索勾股定理證明的過(guò)程,讓學(xué)生掌握數(shù)學(xué)圖形的割補(bǔ)技巧和代數(shù)恒等關(guān)系在幾何中的靈活運(yùn)用。
(三)在情感態(tài)度價(jià)值觀上
1。讓學(xué)生體驗(yàn)探究的樂(lè)趣,培養(yǎng)學(xué)生解決問(wèn)題能力和克服苦難的'決心,感悟數(shù)與形之間的美妙結(jié)合,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信心。
2。通過(guò)介紹勾股定理的歷史小故事,增強(qiáng)學(xué)生的民族自豪感,激發(fā)學(xué)生努力學(xué)習(xí)的意志。
【勾股定理的教學(xué)反思】相關(guān)文章:
勾股定理教學(xué)反思10-17
勾股定理的教學(xué)反思11-24
勾股定理的逆定理數(shù)學(xué)教學(xué)反思12-29
勾股定理教學(xué)教案02-21
八年級(jí)勾股定理教學(xué)反思11-23
勾股定理教案09-06
勾股定理的教案10-13
勾股定理的說(shuō)課稿04-13
勾股定理的優(yōu)秀教案02-20