91国產乱老熟视頻老熟女,97在线起碰视频,麻豆Av一区二区,亚洲视频国产91www.

<pre id="jdrot"></pre>

<td id="jdrot"><strong id="jdrot"></strong></td>
      <pre id="jdrot"></pre>

          當(dāng)前位置:9136范文網(wǎng)>教育范文>教案>分?jǐn)?shù)化成小數(shù)的規(guī)律教案

          分?jǐn)?shù)化成小數(shù)的規(guī)律教案

          時間:2024-05-21 07:17:56 教案 我要投稿
          • 相關(guān)推薦

          分?jǐn)?shù)化成小數(shù)的規(guī)律教案

            作為一名老師,總歸要編寫教案,教案是實施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。如何把教案做到重點突出呢?以下是小編整理的分?jǐn)?shù)化成小數(shù)的規(guī)律教案,希望能夠幫助到大家。

          分?jǐn)?shù)化成小數(shù)的規(guī)律教案

          分?jǐn)?shù)化成小數(shù)的規(guī)律教案1

            教學(xué)內(nèi)容:九年義務(wù)教育六年制小學(xué)數(shù)學(xué)實驗課本第十冊91-92頁《分?jǐn)?shù)化成有限小數(shù)的規(guī)律》

            教學(xué)目標(biāo):

            1、理解掌握最簡分?jǐn)?shù)能否化成有限小數(shù)的規(guī)律,并能運用這一規(guī)律正確地判斷一個分?jǐn)?shù)能否化成有限小數(shù);

            2、讓學(xué)生充分經(jīng)歷“猜想——驗證——探索——再驗證”的過程,使學(xué)生初步感受科學(xué)研究的一般方法,訓(xùn)練學(xué)生思維的嚴(yán)謹(jǐn)性;

            3、在“猜想——探索”的過程中,培養(yǎng)學(xué)生的猜想、觀察、分析、概括及表達(dá)能力和小組合作精神。

            教學(xué)重點:讓學(xué)生充分經(jīng)歷“猜想——探索”的過程,使他們得出分?jǐn)?shù)能否化成有限小數(shù)的規(guī)律。

            教學(xué)難點:探究、理解一個分?jǐn)?shù)能否化成有限小數(shù)。

            教具學(xué)具:多媒體課件

            教學(xué)過程:

            一、提出問題

            1、說出下列各數(shù)各有哪些不同的質(zhì)因數(shù)?

            103512815214022125

            2、分?jǐn)?shù)化成小數(shù),一般用什么方法?

            3、提出問題。

           。1)、動手操作

            同學(xué)們,我們已經(jīng)學(xué)習(xí)了分?jǐn)?shù)化小數(shù)的方法?催@里有許多分?jǐn)?shù)。媒體出示分?jǐn)?shù):

            1/2、1/3、2/5、5/6、5/8、2/9、7/10、9/14、8/15、4/25、3/40、7/30

            媒體出示要求:(同桌合作)

            把分?jǐn)?shù)化成小數(shù)(借助計算器)

            根據(jù)計算的結(jié)果分類。

           。2)、反饋。

            誰愿意來說一說通過計算,你們把這些分?jǐn)?shù)分為幾類?

            又是怎樣分的?

            在學(xué)生回答后,媒體出示分得的結(jié)果。

            能化成有限小數(shù)不能化成有限小數(shù)

            1/22/55/81/35/62/9

            7/104/253/409/148/157/30

            左邊這些分?jǐn)?shù)能化成有限小數(shù),而右邊這些小數(shù)卻不能化成有限小數(shù)。那么你能否一眼就看出怎么樣的分?jǐn)?shù)能化成有限小數(shù),怎么樣的分?jǐn)?shù)不能化成有限小數(shù)呢?

            這節(jié)課我們就來研究能化成有限小數(shù)的分?jǐn)?shù)的規(guī)律。

            (板書課題:能化成有限小數(shù)的分?jǐn)?shù)的規(guī)律)

            二、大膽猜想:

            這兩個部分的分?jǐn)?shù)有什么相同的地方?有什么不同的地方?

            提出問題:仔細(xì)觀察這些分?jǐn)?shù),你覺得一個分?jǐn)?shù)能否化成有限小數(shù)與什么有關(guān)?

            學(xué)生可能提出一下三條:

           。1)一個分?jǐn)?shù)能不能化成有限小數(shù)與分?jǐn)?shù)的分子有關(guān)。

           。2)一個分?jǐn)?shù)能不能化成有限小數(shù)與分?jǐn)?shù)的分母有關(guān)。

           。3)一個分?jǐn)?shù)能不能化成有限小數(shù)與分?jǐn)?shù)的分子、分母都有關(guān)。

            三、探索規(guī)律:

            第一次探索:

            1、提出問題:有的同學(xué)認(rèn)為一個分?jǐn)?shù)能不能化成有限小數(shù)與分子有關(guān)。你們怎樣認(rèn)為?

            2、反饋:你們怎樣認(rèn)為?

            學(xué)生舉例說明:1/2和1/3、2/5和2/9、5/8和5/6這三組分?jǐn)?shù)每一組中分子相同,但是有的能化成有限小數(shù),有的不能化成有限小數(shù),所以一個分?jǐn)?shù)能不能化成有限小數(shù)與分子無關(guān)。

            根據(jù)學(xué)生回答:媒體閃動一下分?jǐn)?shù)1/2和1/3、2/5和2/9、5/8和5/6,  小結(jié):我們可以從1/2和1/3、2/5和2/9、5/8和5/6看出:一個分?jǐn)?shù)能不能化成有限小數(shù)與分子無關(guān)。

            那么我提出的第三條:與分子分母都有關(guān),正確嗎?

            第二次探索:

            1、提出問題:有的同學(xué)認(rèn)為一個分?jǐn)?shù)能不能化成有限小數(shù)與分母有關(guān)。那能化成有限小數(shù)的分?jǐn)?shù)的分母有什么特征?

            2、小組討論。

            學(xué)生在小組討論中可能出現(xiàn)以下幾種情況:

           。1)分母個位是0的分?jǐn)?shù)都能化成有限小數(shù)。

           。2)分母是分子倍數(shù)的分?jǐn)?shù)能化成有限小數(shù)。

           。3)分母是2和5的倍數(shù)的分?jǐn)?shù)一定能化成有限小數(shù)。

           。4)能化成有限小數(shù)的分?jǐn)?shù)分母中只含有質(zhì)因數(shù)2和5。

            3、在學(xué)生小組討論時,教師巡視并參與,引導(dǎo)學(xué)生運用舉例的方法進(jìn)行推理。

           。1)7/30分母個位是0的分?jǐn)?shù)不能化成有限小數(shù)。

           。2)有的同學(xué)認(rèn)為:分母是2或5的倍數(shù)的分?jǐn)?shù)能化成有限小數(shù)。

            這個想法對嗎?為什么?

            學(xué)生舉例說明:

            5/8、7/10、4/25、3/40分母都是2或5的倍數(shù)能化成有限小數(shù);

            5/6、9/14、8/15、7/30分母都是2或5的'倍數(shù)不能化成有限小數(shù)。

            得出結(jié)論:“分母是2或5的倍數(shù)的分?jǐn)?shù)一定能化成有限小數(shù)”是不正確的。

           。3)剛才有的同學(xué)還認(rèn)為:能化成有限小數(shù)的分?jǐn)?shù)分母中只含有質(zhì)因數(shù)2和5。小組討論:這個結(jié)論對不對?為什么?

           。4)反饋。

            A、討論中引導(dǎo)學(xué)生把這些分?jǐn)?shù)的分母分解質(zhì)因數(shù)。

            反饋時,根據(jù)學(xué)生回答板書顯示:

            5/82×2×25/62×3

            7/102×59/142×7

            4/255×58/153×5

            3/402×2×2×57/302×3×5

            引導(dǎo)學(xué)生得出結(jié)論:如果分母中除了2和5以外,不含有其他質(zhì)因數(shù),這個分?jǐn)?shù)就能化成有限小數(shù)。

            分母中含有2和5以外的質(zhì)因數(shù),這個分?jǐn)?shù)就能化成有限小數(shù)。

            生自己找?guī)讉分母中只含有質(zhì)因數(shù)2和5的分?jǐn)?shù),來驗證自己的猜想。

            出示:B、3/15中分母15分解質(zhì)因數(shù)15=3×5,分母中有質(zhì)因數(shù)3,但把他化成小數(shù)等于0.2是一個有限小數(shù)。

            討論:這和我們剛才的結(jié)論不是矛盾了嗎?為什么?

            通過討論得出:剛才我們討論的分?jǐn)?shù)都是最簡分?jǐn)?shù),3/15不是最簡分?jǐn)?shù),但是化簡后等于1/5,分母中不含有2和5以外的質(zhì)因數(shù),所以能化成有限小數(shù)。

            學(xué)生回答:這個分?jǐn)?shù)必須是最簡分?jǐn)?shù)才符合這個規(guī)律。

           。5)這就是能化成有限小數(shù)的分?jǐn)?shù)的規(guī)律,請大家看書,把這個規(guī)律填寫完整,并輕聲地讀兩遍。

            一個()分?jǐn)?shù),如果分母中除了()和()以外,不含其他的質(zhì)因數(shù),這個分?jǐn)?shù)就能化成(

           。┬(shù);如果分母中含有()和()以外的質(zhì)因數(shù),這個分?jǐn)?shù)就不能化成()小數(shù)。、

            三、運用規(guī)律

            1、根據(jù)剛才的發(fā)現(xiàn),想一想判斷一個分?jǐn)?shù)能不能化成有限小數(shù)要先想什么?再想什么?同桌互相說一說。

            哪位同學(xué)愿意來說一說。

            學(xué)生回答:先想這個分?jǐn)?shù)是不是最簡分?jǐn)?shù)?再想分母中是否含有2和5以外的質(zhì)因數(shù)?

            2、練一練

            判別下面各分?jǐn)?shù),哪些能化成有限小數(shù),哪些不能化成有限小數(shù)?為什么?

            3/20xx/1815/84/1132/258/97/283/169/40

            29/1214/5

            小組討論:通過剛才的判斷,你又發(fā)現(xiàn)了什么?

            學(xué)生回答:我們只要先看它是不是最簡分?jǐn)?shù),再分析分母中質(zhì)因數(shù)的情況

            3、判斷題。

           。1)一個分?jǐn)?shù),如果分母中除了2和5以外,還含有其他的質(zhì)因數(shù),這個分?jǐn)?shù)就不能化成有限小數(shù)。

           。ǎ

           。2)一個最簡分?jǐn)?shù),如果分母中含有質(zhì)因數(shù)2和5,這個分?jǐn)?shù)一定能化成有限小數(shù)。

           。ǎ

           。3)一個最簡分?jǐn)?shù),如果分母有約數(shù)3,一定不能化成有限小數(shù)。()

            (4)一個最簡分?jǐn)?shù),如果分母有約數(shù)7,一定不能化成有限小數(shù)。()

            第(1)(2)是錯誤的,要求學(xué)生說說是怎樣想的?怎樣說就對了。

            四、課堂小結(jié)

            回顧一下,這節(jié)課我們探索了什么?你有那些收獲?

            五、拓展延伸:

            剛才我們探索得到了分?jǐn)?shù)化小數(shù)時的一個規(guī)律。

            其實在分?jǐn)?shù)化小數(shù)時,還有許多規(guī)律。

            觀察下列各式,按規(guī)律填空。

            3/4=0.75(2×2)4/25=0.16(5×5)

            7/8=0.875(2×2×2)9/125=0.072(5×5×5)

            5/16能化成()位小數(shù)8/625能化成()位小數(shù)

            (2×2×2×2)(5×5×5×5)

            先獨立思考,再小組討論。

            學(xué)生匯報時說出規(guī)律:分母中只有1個質(zhì)因數(shù)2(或5)化成一位小數(shù),只有2個質(zhì)因數(shù)(2或5)化成兩位小數(shù),……只有4個質(zhì)因數(shù)2(或5)所以能化成四位小數(shù)。

            因為5/16分母中有4個質(zhì)因數(shù)2,所以它能化成四位小數(shù)

            因為8/125分母中有4個質(zhì)因數(shù)5,所以它能化成四位小數(shù)。

            用計算器算一算對嗎?

            學(xué)生通過計算器證明答案是正確的。

            教師小結(jié):在數(shù)學(xué)王國中還有許許多多的規(guī)律,我們只要認(rèn)真學(xué)習(xí),不斷探索,一定能發(fā)現(xiàn)更多更有趣的規(guī)律。

          分?jǐn)?shù)化成小數(shù)的規(guī)律教案2

            教學(xué)內(nèi)容:概括分?jǐn)?shù)可以化成小數(shù)的規(guī)律。

            教學(xué)目標(biāo):

            使學(xué)生掌握最簡分?jǐn)?shù)能否化成有限小數(shù)的特征,并能正確的進(jìn)行判斷。

            教學(xué)過程:

            一、復(fù)習(xí)

            1、怎樣把小數(shù)化成分?jǐn)?shù)?

            2、怎樣把分?jǐn)?shù)化成小數(shù)?

            二、教學(xué)新課

            1、讓學(xué)生把下面的分?jǐn)?shù)化成小數(shù),(除不盡的保留兩位小數(shù))

            1/21/3.3/42/55/68/153/22

            5/82/97/101/129/144/253/40

            能化成有限小數(shù)的'分?jǐn)?shù)不能化成有限小數(shù)的分?jǐn)?shù)

            三、引導(dǎo)觀察

           。1)觀察兩個框內(nèi)的分?jǐn)?shù),各有什么特征?(他們是最簡份數(shù))

           。2)把這些份數(shù)的分母分別分解質(zhì)因數(shù)。

           。3)再次觀察這些份數(shù)的分母有什么特點。

           。4)師生共同歸納

           。5)議一議

           。6)請每個同學(xué)舉出兩個例子,驗證一下剛才概括的這個特征是否正確。

            四、應(yīng)用這些特征判斷哪些分?jǐn)?shù)能化成有限小數(shù),哪些不能。

            五、鞏固練習(xí)

            六、布置作業(yè)

          【分?jǐn)?shù)化成小數(shù)的規(guī)律教案】相關(guān)文章:

          《分?jǐn)?shù)與小數(shù)的互化》優(yōu)秀教案02-26

          小學(xué)五年級數(shù)學(xué)整數(shù)、帶分?jǐn)?shù)化成假分?jǐn)?shù)教案04-04

          《百分?jǐn)?shù)和分?jǐn)?shù)、小數(shù)的互化》教案01-08

          分?jǐn)?shù)乘小數(shù)教學(xué)反思04-27

          分?jǐn)?shù)、小數(shù)互化教學(xué)反思03-14

          《分?jǐn)?shù)和小數(shù)的互化》教學(xué)反思11-09

          《找規(guī)律》教案11-03

          《找規(guī)律》教案03-18

          找規(guī)律教案02-19