91国產乱老熟视頻老熟女,97在线起碰视频,麻豆Av一区二区,亚洲视频国产91www.

<pre id="jdrot"></pre>

<td id="jdrot"><strong id="jdrot"></strong></td>
      <pre id="jdrot"></pre>

          當前位置:9136范文網(wǎng)>教育范文>說課稿>勾股定理說課稿

          勾股定理說課稿

          時間:2024-09-11 09:11:01 說課稿 我要投稿

          關(guān)于勾股定理說課稿模板合集五篇

            作為一名老師,總不可避免地需要編寫說課稿,說課稿可以幫助我們提高教學效果。那么優(yōu)秀的說課稿是什么樣的呢?下面是小編精心整理的勾股定理說課稿5篇,供大家參考借鑒,希望可以幫助到有需要的朋友。

          關(guān)于勾股定理說課稿模板合集五篇

          勾股定理說課稿 篇1

            本節(jié)課設(shè)計力求讓學生參與知識的發(fā)現(xiàn)過程,體現(xiàn)以學生為主體,以促進學生發(fā)展為本的教學理念,變知識的傳授者為學生自主探求知識的引導者、指導者、合作者。并利用多媒體,直觀教具演示,營造一個聲像同步,能動能靜的教學情境,給學生提供一個探索的空間,促使學生主動參與,親身體驗勾股定理的探索證明過程,從而鍛煉思維、激發(fā)創(chuàng)造,優(yōu)化課堂教學。努力做到有傳統(tǒng)的教學課堂像實驗課堂轉(zhuǎn)變,使學生真正成為學習的主人,培養(yǎng)了學生的素質(zhì)能力,達到了良好的教學效果。

            (一)創(chuàng)設(shè)情境,引入新課

            課前首先讓學生閱讀趙爽的弦圖相關(guān)知識讓他們體會中國古代科學的發(fā)達。在課堂上緊密結(jié)合前面已學的知識進行導入。如提出問題:你見過這個圖案嗎?你聽說過勾股定理嗎?你還記得三角形的三邊遵循什么規(guī)律嗎?等等一系列的問題激起學生學生的熱情和求知欲,然后順利進入探究。本節(jié)我們就來學習一下直角三角形的三條邊除具備前面的性質(zhì)外還有什么新的特征。

            (二)引導學生,探究新知

            ①初步感知定理:這一環(huán)節(jié)我選擇了教材的圖片,講述畢達哥拉斯到朋友家做客時發(fā)現(xiàn)用磚鋪成的地面,其中含有直角三角形三邊的數(shù)量關(guān)系,創(chuàng)設(shè)感知情境,提出問題,現(xiàn)在請同學觀察,看看有什么發(fā)現(xiàn)?(學案出示)使問題更形象、具體。

           、谔岢霾孪耄涸诨顒1的基礎(chǔ)上,學生已發(fā)現(xiàn)一些規(guī)律,進一步通過活動2進行看一看、填一填、想一想、議一議、做一做,讓學生感受不只是等腰直角三角形才具有這樣的性質(zhì),學生再由淺到深,由特殊到一般的提出問題,啟發(fā)學生得出猜想,直角三角形的兩直角邊的`平分和等于斜邊的平方。

            ③證明猜想:是不是所有的直角三角形都有這樣的特點呢?這就需要我們對一個一般的直角三角形進行證明:通過活動3我充分引導學生利用直觀教具,進行拼圖實驗,在動手操中放手讓學生思考、討論、合作、交流、探究問題的多種方法。,并對學生的做法給予表揚,使學生在學習過程中,感受到自我創(chuàng)造的快樂,從而分散了教學難點,發(fā)現(xiàn)了利用面積相等去證明勾股定理的方法。

           、芸偨Y(jié)定理:讓學生自己總結(jié),不完善之處由教師補充,在前面探究活動的基礎(chǔ)上,學生容易得出直角三角形的三邊數(shù)量關(guān)系即勾股定理。

            (三)反饋訓練,鞏固新知

            學生對所學的知識是否掌握了,達到了什么程度?為了檢測學生對本課的達成情況和加強對學生能力的培養(yǎng),我設(shè)計了一組坡有難度的練習題。

            (四)歸納總結(jié),深化新知

            本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進一步研究的問題是什么?……

            通過小結(jié),使學生進一步明確掌握教學目標,使知識成為體系。

            (五)布置作業(yè)。拓展新知

            讓學生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流。使本節(jié)知識得到拓展、延伸,培養(yǎng)了學生能力和思維的深刻性,讓學生感受數(shù)學深厚的文化底蘊。

            (六)板書設(shè)計,明確新知

          勾股定理說課稿 篇2

            尊敬的各位評委:

            您們好!我來自明光市張八嶺中學。今天我說課的課題是《勾股定理》。本課選自九年義務教育滬科版八年級下冊初中數(shù)學第十九章第一節(jié)的第一課時。

            下面我從教學背景分析、教材處理、教學策略、教學流程方面對本課的設(shè)計進行說明。

            一、教學背景分析

            1、教材分析

            本節(jié)課是學生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進行學習的,通過一枚1955年由希臘發(fā)行的郵票上圖案的故事,引入勾股定理,進而探索直角三角形三邊的數(shù)量關(guān)系,并應用它解決問題。學好本節(jié)不僅為下節(jié)勾股定理的逆定理打下良好基礎(chǔ),而且為今后學習解直角三角形奠定基礎(chǔ),同時在實際生活中用途也很大。勾股定理是直角三角形的一條非常重要的性質(zhì),是幾何中一個非常重要的定理,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,將數(shù)與形密切地聯(lián)系起來,它有著豐富的歷史背景,在理論上占有重要的地位。

            2、學情分析

            學生已經(jīng)學習了有關(guān)三角形的一些知識,如三角形的三邊不等關(guān)系,三角形全等的判定等。也學過不少利用圖形面積來探求數(shù)式運算規(guī)律的例子,如探求乘法公式、單項式乘多項式法則、多項式乘多項式法則等。在學生這些原有的認知水平基礎(chǔ)上,探求直角三角形的又一重要性質(zhì)——勾股定理。讓學生的知識形成知識鏈,讓學生已具有的數(shù)學思維能力得以充分發(fā)揮和發(fā)展。

            3、教學目標:

            根據(jù)八年級學生的認知水平,依據(jù)新課程標準和教學大綱的要求,我制定了如下的教學目標:

            知識與技能:了解勾股定理的發(fā)現(xiàn)過程,掌握勾股定理的內(nèi)容,會用面積法證明勾股定理;培養(yǎng)在實際生活中發(fā)現(xiàn)問題總結(jié)規(guī)律的意識和能力.

            過程與方法:在探索勾股定理的過程中,讓學生經(jīng)歷“觀察—猜想—歸納—驗證”的數(shù)學思想,并體會數(shù)形結(jié)合和從特殊到一般的思想方法。

            情感態(tài)度價值觀:感受數(shù)學文化,激發(fā)學生學習的熱情,體驗合作學習成功的喜悅,滲透數(shù)形結(jié)合的思想。

            4、教學重點、難點

            通過研究分析可見,勾股定理是平面幾何的重要定理,有著承上啟下的作用,在今后的生活實踐中有著廣泛應用。因此我確定本課的教學重點為勾股定理的證明與運用,教學難點為用面積法證明勾股定理

            二、教材處理

            根據(jù)學生情況,為有效培養(yǎng)學生能力,在教學過程中,我先以數(shù)學史中的一個有趣的故事來激發(fā)學生學習興趣,運用直觀教具、多媒體等手段,調(diào)動學生學習積極性,并開展以探究活動為主的教學模式,邊設(shè)疑,邊講解,邊操作,邊討論,啟發(fā)學生提出問題,分析問題,進而解決問題,以達到突出重點,攻破難點的目的。

            三、教學策略

            1、教法

            “教必有法,而教無定法”,只有方法恰當,才會有效。根據(jù)本課內(nèi)容特點和八年級學生思維活動特點,我采用了引導發(fā)現(xiàn)教學法,合作探究教學法,逐步滲透教學法和師生共研相結(jié)合的方法。

            2、學法

            “授人以魚,不如授人以漁”,通過設(shè)計問題序列,引導學生主動探究新知,合作交流,體現(xiàn)學習的自主性,從不同層次發(fā)掘不同學生的不同能力,從而達到發(fā)展學生思維能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。

            3、教學手段

            充分利用多媒體,提高教學效率,增大教學容量;通過多媒體演示,激發(fā)學生學習興趣,啟迪學生思維的發(fā)展;通過直觀教具,進行動手操作,調(diào)動學生學習的積極性,培養(yǎng)學生思維的廣闊性。

            4、教學模式

            根據(jù)新課標要求,要積極倡導自主、合作、探究的學習方式,我采用了創(chuàng)設(shè)情境——探究新知——反饋訓練的教學模式,使學生獲取知識,提高素質(zhì)能力。

            四、教學流程

           。ㄒ唬﹦(chuàng)設(shè)情境,引入新課(時長2~3分鐘)

            我利用多媒體課件,給學生展示一枚1955年由希臘發(fā)行的郵票,并問學生是否想聽這枚郵票背后的故事?

            在20xx多年前,古希臘有一位著名的數(shù)學家——畢達哥拉斯,有次參加一位政要人物邀請的餐會,這位主人的宮殿般豪華的餐廳鋪著正方形的美麗的大理石地磚,由于大餐遲遲不上桌,這些饑腸轆轆的貴賓頗有怨言,但這位善于觀察和理解的數(shù)學家卻凝視腳下這些排列規(guī)則,美麗的方形瓷磚,畢達哥拉斯不只是欣賞瓷磚的美麗,而是想到它們和“數(shù)”之間的關(guān)系,于是他拿了畫筆并且蹲在地板上,選了一塊瓷磚以它的'對角線為邊畫了一個大正方形,同學們,你們知道他發(fā)現(xiàn)了什么嗎?

            對學生的回答進行引導,梳理,總結(jié),可以得到有關(guān)三個正方形面積的結(jié)論。進而引入本節(jié)課的標題:19.1 勾股定理(板書)

            (以小故事激發(fā)學生的興趣,隨后以開放式的問題形式,讓學生觀察猜想。本環(huán)節(jié)體現(xiàn)了人文關(guān)懷,并兼顧了教材中的探究,為下一步勾股定理的證明埋下伏筆。)

           。ǘ┮龑W生,探究新知(教學時長15~20分鐘)

            1、初步感知定理:

           。1)用什么方法來探求:勾股定理即直角三角形三邊數(shù)量關(guān)系呢?

            回憶我們曾經(jīng)利用圖形面積探索過數(shù)學公式,大家還記得在哪用過嗎?

            (學生討論)

            課件展示:平方差公式、完全平方公式、單項式乘多項式、多項式乘多項式的引出.

            今天,讓我們試一試通過計算圖形的面積能不能得到直角三角形三邊數(shù)量關(guān)系. (從學生已有的學習經(jīng)驗出發(fā),將探求邊長之間的關(guān)系轉(zhuǎn)化為探求面積之間的關(guān)系,讓學生覺得解決今天問題的方法并不陌生,增強探索問題的信心.)

            (2)展示課本上圖19—1和圖19—2(1)的圖形,觀察圖中三個正方形有什么關(guān)系?

            讓學生通過觀察,計算出三個正方形的面積可以發(fā)現(xiàn):對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠C=90°,AC=BC時,則AB。

            (這樣做有利于學生參與探索,感受數(shù)學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數(shù)形結(jié)合的思想。)

           。3)緊接著讓學生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出圖19.2(2)(一般直角三角形)。學生可以同樣求出兩個小正方形面積,只是求大正方形的面積有一些困難,這時可讓學生在預先準備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學生就能夠發(fā)現(xiàn):對于一般的以整數(shù)為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。

            給出書中的定理(板書)并用彎曲的手臂形象地表示勾、股、弦的概念,板書勾股定理,進而給出字母表達式.

            通過學生的動手操作、合作交流,來獲取知識,這樣設(shè)計有利于突破難點,也讓學生體會到觀察、猜想、歸納的數(shù)學思想及學習過程,提高學生的分析問題和解決問題的能力。

            2、證明結(jié)論(教學時長8~10分鐘):

            出示書中圖19—3,與學生共同分析證明并板書過程。通過給出定理的證明過程讓學生體會到數(shù)學知識從特殊性到一般性,并對一般性結(jié)論進行論證的嚴謹性。

            3、勾股定理簡介:(教學時長1~2分鐘)

            借助多媒體課件,通過介紹古代在勾股定理研究方面取得的成就,感受數(shù)學文化,激發(fā)學生學習的熱情,體會古人偉大的智慧。

            (三)反饋訓練,鞏固新知(教學時長6~8分鐘)

            讓學生完成兩項任務:

            任務一:教材練習第一題;

            任務二:1,Rt?ABC中,c為斜邊,a=3,b=4.,則c=?

            2,?ABC中c為最長邊,a=3,b=4,則c=?

            任務一和任務二中第一題都是基礎(chǔ)題,對于任務二中第二題是提高題,對于做錯的學生進行引導讓其思考,再告知錯誤的原因。通過練習,讓學生更好的體會到,勾股定理揭示的是直角三角形三邊之間的數(shù)量關(guān)系,讓學生能夠更好的將數(shù)與形緊密聯(lián)系起來進行思考。

           。ㄋ模w納小結(jié),深化新知(教學時長1~2分鐘)

            本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進一步研究的的問題是什么???

            通過小結(jié),使學生進一步明確掌握教學目標,使知識成為體系。

           。ㄎ澹┎贾米鳂I(yè),拓展新知(教學時長1~2分鐘)

            讓學生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流.使本節(jié)知識得到拓展、延伸,培養(yǎng)了學生能力和思維的深刻性,讓學生感受數(shù)學深厚的文化底蘊。

           。┌鍟O(shè)計,明確新知

            本節(jié)課的板書設(shè)計,它分為三塊:一塊是復習引入,一塊是勾股定理;一塊是例題解析。它突出了重點,層次清楚,便于學生掌握,為獲得知識服務。

            以上內(nèi)容,我僅從教學背景分析、教材處理、教學策略、教學流程方面說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領(lǐng)導對本次說課提出寶貴的意見,謝謝!

          勾股定理說課稿 篇3

          各位專家領(lǐng)導:

            上午好!今天我說課的課題是《勾股定理》。

            一、教材分析:

            (一)本節(jié)內(nèi)容在全書和章節(jié)的地位。

            這節(jié)課是九年制義務教育課程標準實驗教科書(華東版),八年級第十九章第二節(jié)“勾股定理”第一課時。勾股定理是學生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進行學習的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形的主要依據(jù)之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學生的動手操作能力和觀察分析問題的能力;通過實際分析,拼圖等活動,使學生獲得較為直觀的印象;通過聯(lián)系比較,理解勾股定理,以便于正確的進行運用。

            (二)三維教學目標:

            1、知識與能力目標。

           。1)理解并掌握勾股定理的內(nèi)容和證明,能夠靈活運用勾股定理及其計算;

           。2)通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。

            2、過程與方法目標。

            在探索勾股定理的過程中,讓學生經(jīng)歷“觀察-猜想-歸納-驗證”的數(shù)學思想,并體會數(shù)形結(jié)合和從特殊到一般的思想方法。

            3、情感態(tài)度與價值觀。

            通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國和熱愛祖國悠久文化的思想感情,培養(yǎng)學生的民族自豪感和鉆研精神。

            (三)教學重點、難點:

            1、教學重點:勾股定理的證明與運用

            2、教學難點:用面積法等方法證明勾股定理

            3、難點成因:

            對于勾股定理的得出,首先需要學生通過動手操作,在觀察的基礎(chǔ)上,大膽猜想數(shù)學結(jié)論,而這需要學生具備一定的分析、歸納的思維方法和運用數(shù)學的思想意識,但學生在這一方面的可預見性和耐挫折能力并不是很成熟,從而形成困難。

            4、突破措施:

           。1)創(chuàng)設(shè)情景,激發(fā)思維:

            創(chuàng)設(shè)生動、啟發(fā)性的問題情景,激發(fā)學生的問題沖突,讓學生在感到“有趣”、“有意思”的狀態(tài)下進入學習過程;

           。2)自主探索,敢于猜想:

            充分讓自己動手操作,大膽猜想數(shù)學問題的結(jié)論,老師是整個活動的組織者,更是一位參入者,學生之間相互交流、協(xié)作,從而形成生動的課堂環(huán)境;

           。3)張揚個性,展示風采:

            實行“小組合作制”,各小組中自己推薦一人擔任“發(fā)言人”,一人擔任“書記員”,在討論結(jié)束后,由小組的“發(fā)言人”匯報本小組的討論結(jié)果,并可上臺利用“多媒體視頻展示臺”展示本組的優(yōu)秀作品,其他小組給予評價。這樣既保證討論的有效性,也調(diào)動了學生的學習積極性。

            二、教法與學法分析:

            1、教法分析:

            數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科,因此在教學中,不僅要使學生“知其然”,而且還要使學生“知其所以然”。針對初二年級學生的認知結(jié)構(gòu)和心理特征,本節(jié)課可選擇“引導探索法”,由淺到深,由特殊到一般的提出問題。引導學生自主探索,合作交流,這種教學理念緊隨新課改理念,也反映了時代精神。基本的教學程序是“創(chuàng)設(shè)情景-動手操作-歸納驗證-問題解決-課堂小結(jié)-布置作業(yè)”六個方面。

            2、學法分析:

            新課標明確提出要培養(yǎng)“可持續(xù)發(fā)展的學生”,因此教師要有組織、有目的、有針對性的引導學生并參入到學習活動中,鼓勵學生采用自主探索,合作交流的研討式學習方式,培養(yǎng)學生“動手”、“動腦”、“動口”的習慣與能力,使學生真正成為學習的主人。

            三、教學過程設(shè)計:

            (一)創(chuàng)設(shè)情景:

            多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?

            問題的設(shè)計有一定的挑戰(zhàn)性,目的是激發(fā)學生的探究欲望,老師要注意引導學生將實際問題轉(zhuǎn)化為數(shù)學問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學生會感到一些困難,從而老師指出學習了今天的這節(jié)課后,同學們就會有辦法解決了。這種以實際問題作為切入點導入新課,不僅自然,而且也反映了“數(shù)學來源于生活”,學習數(shù)學是為更好“服務于生活”。

            (二)動手操作:

            1、課件出示課本P99圖19.2.1:

            觀察圖中用陰影畫出的三個正方形,你從中能夠得出什么結(jié)論?

            學生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵學生用語言進行描述,引導學生發(fā)現(xiàn)SP+SQ=SR(此時讓小組“發(fā)言人”發(fā)言),從而讓學生通過正方形的面積之間的關(guān)系發(fā)現(xiàn):對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠C=90°,AC=BC時,則 AC2+BC2=AB2。這樣做有利于學生參與探索,感受數(shù)學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數(shù)形結(jié)合的思想。

            2、緊接著讓學生思考:

            上述是在等腰直角三角形中的情況,那么在一般情況下的.直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出P100圖 19.2.2(一般直角三角形)。學生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時可讓學生在預先準備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學生就能夠發(fā)現(xiàn):對于一般的以整數(shù)為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學生的動手操作、合作交流,來獲取知識,這樣設(shè)計有利于突破難點,也讓學生體會到觀察、猜想、歸納的數(shù)學思想及學習過程,提高學生的分析問題和解決問題的能力。

            3、再問:

            當邊長不為整數(shù)的直角三角形是否也存在這一結(jié)論呢?投影例題:一個邊長分別為1.5,3.6,3.9這種含有小數(shù)的直角三角形,讓學生計算。這樣設(shè)計的目的是讓學生體會到“從特殊到一般”的情形,這樣歸納的結(jié)論更具有一般性。

            (三)歸納驗證:

            1、歸納:

            通過動手操作、合作交流,探索邊長為整數(shù)的等腰直角三角形到一般的直角三角形,再到邊長為小數(shù)的直角三角形的兩直角邊與斜邊的關(guān)系,讓學生在整個學習過程中感受學數(shù)學的樂趣,,使學生學會“文字語言”與“數(shù)學語言”這兩種表達方式,各小組“發(fā)言人”的積極表現(xiàn),整堂課充分發(fā)揮學生的主體作用,真正獲取知識,解決問題。

            2、驗證:

            先后三次驗證“勾股定理”這一結(jié)論,期間學生動手進行了畫圖、剪圖、拼圖,還有測量、計算等活動,使學生從中體會到數(shù)形結(jié)合和從特殊到一般的數(shù)學思想,而且這一過程也有利于培養(yǎng)學生嚴謹、科學的學習態(tài)度。

            (四)問題解決:

            1、讓學生解決開始上課前所提出的問題,前后呼應,讓學生體會到成功的快樂。

            2、自學課本P101例1,然后完成P102練習。

            (五)課堂小結(jié):

            1、小組成員從內(nèi)容、數(shù)學思想方法、獲取知識的途徑進行小結(jié),后由“發(fā)言人”匯報,小組間要互相比一比,看看哪一個小組表現(xiàn)最佳。

            2、教師用多媒體介紹“勾股定理史話”。

           。1)《周髀算徑》:西周的商高(公元一千多年前)發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律。

           。2)康熙數(shù)學專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨創(chuàng)。

            3、目的:對學生進行愛國主義教育,激勵學生奮發(fā)向上。

            (六)布置作業(yè):

            課本P104習題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學生進一步體會定理與實際生活的聯(lián)系。

            以上內(nèi)容,我僅從“說教材”,“說學情”、“說教法”、“說學法”、“說教學過程”上來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領(lǐng)導對本次說課提出寶貴的意見,謝謝!

          勾股定理說課稿 篇4

            一、教材分析:

           。ㄒ唬┙滩牡牡匚慌c作用

            從知識結(jié)構(gòu)上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學習解直角三角形提供重要的理論依據(jù),在現(xiàn)實生活中有著廣泛的應用。

            從學生認知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;

            勾股定理又是對學生進行愛國主義教育的良好素材,因此具有相當重要的地位和作用。

            根據(jù)數(shù)學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數(shù)學思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數(shù)學文化為主線,激發(fā)學生熱愛祖國悠久文化的情感。

           。ǘ┲攸c與難點

            為變被動接受為主動探究,我確定本節(jié)課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點,我將引導學生動手實驗突出重點,合作交流突破難點。

            二、教學與學法分析

            教學方法

            葉圣陶說過"教師之為教,不在全盤授予,而在相機誘導。"因此教師利用幾何直觀提出問題,引導學生由淺入深的探索,設(shè)計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。

            學法指導

            為把學習的主動權(quán)還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。

            三、教學過程

            我國數(shù)學文化源遠流長、博大精深,為了使學生感受其傳承的魅力,我將本節(jié)課設(shè)計為以下五個環(huán)節(jié)。

            首先,情境導入,古韻今風

            給出《七巧八分圖》中的一組圖片,讓學生利用兩組七巧板進行合作拼圖。讓學生觀察并思考三個正方形面積之間的關(guān)系?它們圍成了怎么樣三角形,反映在三邊上,又蘊含著怎么樣數(shù)學奧秘呢?寓教于樂,激發(fā)學生好奇、探究的欲望。

            第二步,追溯歷史,解密真相

            勾股定理的探索過程是本節(jié)課的重點,依照數(shù)學知識的循序漸進、螺旋上升的原則,我設(shè)計如下三個活動。

            從上面低起點的問題入手,有利于學生參與探索。學生很容易發(fā)現(xiàn),在等腰三角形中存在如下關(guān)系。巧妙的將面積之間的關(guān)系轉(zhuǎn)化為邊長之間的關(guān)系,體現(xiàn)了轉(zhuǎn)化的思想。觀察發(fā)現(xiàn)雖然直觀,但面積計算更具說服力。將圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計算圖形面積,體現(xiàn)了數(shù)形結(jié)合的思想。學生會想到用"數(shù)格子"的方法,這種方法雖然簡單易行,但對于下一步探索一般直角三角形并不適用,具有局限性。因此教師應引導學生利用"割"和"補"的方法求正方形C的面積,為下一步探索復雜圖形的面積做鋪墊。

            突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結(jié)論呢?體現(xiàn)了"從特殊到一般"的認知規(guī)律。教師給出邊長單位長度分別為3、4、5的直角三角形,避免了學生因作圖不準確而產(chǎn)生的`錯誤,也為下面"勾三股四弦五"的提出埋下伏筆。有了上一環(huán)節(jié)的鋪墊,有效地分散了難點。在求正方形C的面積時,學生將展示"割"的方法,"補"的方法,有的學生可能會發(fā)現(xiàn)平移的方法,旋轉(zhuǎn)的方法,對于這兩種新方法教師應給于表揚,肯定學生的研究成果,培養(yǎng)學生的類比、遷移以及探索問題的能力。

            使用幾何畫板動態(tài)演示,使幾何與代數(shù)之間的關(guān)系可視化。當為直角三角形時,改變?nèi)呴L度三邊關(guān)系不變,當∠α為銳角或鈍角時,三邊關(guān)系就改變了,進而強調(diào)了命題成立的前提條件必須是直角三角形。加深學生對勾股定理理解的同時也拓展了學生的視野。

            以上三個環(huán)節(jié)層層深入步步引導,學生歸納得到命題1,從而培養(yǎng)學生的合情推理能力以及語言表達能力。

            感性認識未必是正確的,推理驗證證實我們的猜想。

            第三步,推陳出新,借古鼎新

            教材中直接給出"趙爽弦圖"的證法對學生的思維是一種禁錮,教師創(chuàng)新使用教材,利用拼圖活動解放學生的大腦,讓學生發(fā)揮自己的聰明才智證明勾股定理。這是教學的難點也是重點,教師應給學生充分的自主探索的時間與空間,讓學生的思維在相互討論中碰撞、在相互學習中完善。教師深入到學生中間,觀察學生探究方法接受學生的質(zhì)疑,對于不同的拼圖方案給予肯定。從而體現(xiàn)出"學生是學習的主體,教師是組織者、引導者與合作者"這一教學理念。學生會發(fā)現(xiàn)兩種證明方案。

            方案1為趙爽弦圖,學生講解論證過程,再現(xiàn)古代數(shù)學家的探索方法。方案2為學生自己探索的結(jié)果,論證之巧較方案1有異曲同工之妙。整個探索過程,讓學生經(jīng)歷由表面到本質(zhì),由合情推理到演繹推理的發(fā)掘過程,體會數(shù)學的嚴謹性。對比"古"、"今"兩種證法,讓學生體會"吹盡黃沙始到金"的喜悅,感受到"青出于藍而勝于藍"的自豪感。板書勾股定理,進而給出字母表示,培養(yǎng)學生的符號意識。

            教師對"勾、股、弦"的含義以及古今中外對勾股定理的研究做一個介紹,使學生感受數(shù)學文化,培養(yǎng)民族自豪感和愛國主義精神。利用勾股樹動態(tài)演示,讓學生欣賞數(shù)學的精巧、優(yōu)美。

            第四步,取其精華,古為今用

            我按照"理解—掌握—運用"的梯度設(shè)計了如下三組習題。

           。1)對應難點,鞏固所學;(2)考查重點,深化新知;(3)解決問題,感受應用

            第五步,溫故反思,任務后延

            在課堂接近尾聲時,我鼓勵學生從"四基"的要求對本節(jié)課進行小結(jié)。進而總結(jié)出一個定理、二個方案、三種思想、四種經(jīng)驗。

            然后布置作業(yè),分層作業(yè)體現(xiàn)了教育面向全體學生的理念。

          勾股定理說課稿 篇5

            課題:勾股定理

            內(nèi)容:教材分析、教法學法分析、教學過程設(shè)計、設(shè)計說明

            一、 教材分析

           。ㄒ唬┙滩乃幍牡匚

            這節(jié)課是華師大九年制義務教育課程標準實驗教科書八年級總第19章第2節(jié)探索勾股定理,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎(chǔ)上對直角三角形有進一步的認識和理解。

            (二)根據(jù)課程標準,本課的教學目標是:

            1、能說出勾股定理的內(nèi)容。

            2、會初步運用勾股定理進行簡單的計算和實際運用。

            3、在探索勾股定理的過程中,讓學生經(jīng)歷“觀察—猜想—歸納—驗證”的數(shù)學思想,并體會數(shù)形結(jié)合和特殊到一般的思想方法。

            4、通過介紹勾股定理在中國古代的研究,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發(fā)奮學習。

           。ㄈ┍菊n的教學重點:探索勾股定理

            本課的教學難點:以直角三角形為邊的正方形面積的計算。

            二、教法與學法分析

            教法分析:針對初二年級學生的知識結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導探索法,由淺入深,由特殊到一般地提出問題。引導學生自主探索,合作交流,這種教學理念反映了時代精神,有利于提高學生的思維能力,能有效地激發(fā)學生的思維積極性,基本教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結(jié)—布置作業(yè)六部分。

            學法分析:在教師的組織引導下,采用自主探索、合作交流的研討式學習方式,讓學生思考問題,獲取知識,掌握方法,借此培養(yǎng)學生動手、動腦、動口的能力,使學生真正成為學習的主體。

            三、 教學過程設(shè)計

            (一)數(shù)學史導入

            以畢達哥拉斯發(fā)現(xiàn)勾股定理引入新課,不僅自然,而且反映了數(shù)學來源于實際生活,數(shù)學是從人的需要中產(chǎn)生這一認識的基本觀點,同時也體現(xiàn)了知識的發(fā)生過程,而且解決問題的過程也是一個“數(shù)學化”的過程。

            (二)實驗操作

            1、投影課本圖的有關(guān)直角三角形問題,讓學生計算正方形A,B,C的面積,學生可能有不同的方法,不管是通過直接數(shù)小方格的個數(shù),還是將C劃分為4個全等的等腰直角三角形來求等等,各種方法都應予于肯定,并鼓勵學生用語言進行表達,引導學生發(fā)現(xiàn)正方形A,B,C的面積之間的數(shù)量關(guān)系,從而學生通過正方形面積之間的關(guān)系容易發(fā)現(xiàn)對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學生參與探索,感受數(shù)學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數(shù)形結(jié)合的思想。

            2、接著讓學生思考:如果是其它一般的直角三角形,是否也具備這一結(jié)論呢?于是投影圖1—3,圖1—4,同樣讓學生計算正方形的面積,但正方形C的面積不易求出,可讓學生在預先準備的方格紙上畫出圖形,在剪一剪,拼一拼后學生也不難發(fā)現(xiàn)對于一般的以整數(shù)為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設(shè)計不僅有利于突破難點,而且為歸納結(jié)論打下了基礎(chǔ),讓學生體會到觀察、猜想、歸納的思想,也讓學生的分析問題和解決問題的能力在無形中得到了提高,這對后面的'學習及有幫助。

            3、給出一個邊長單位為5,12,13,這種含小數(shù)的直角三角形,讓學生計算是否也滿足這個結(jié)論,設(shè)計的目的是讓學生體會到結(jié)論更具有一般性。

            (三)歸納驗證

            1、歸納通過對邊長為整數(shù)的等腰直角三角形到一般直角三角形再到邊長含小數(shù)的直角三角形三邊關(guān)系的研究,讓學生用數(shù)學語言概括出一般的結(jié)論,盡管學生可能講的不完全正確,但對于培養(yǎng)學生運用數(shù)學語言進行抽象、概括的能力是有益的,同時發(fā)揮了學生的主體作用,也便于記憶和理解,這比教師直接教給學生一個結(jié)論要好的多。

            2、驗證為了讓學生確信結(jié)論的正確性,引導學生在紙上任意作一個直角三角形,通過動手操作拼圖來驗證結(jié)論的正確性和廣泛性。這一過程有利于培養(yǎng)學生嚴謹、科學的學習態(tài)度。然后引導學生用符號語言表示,因為將文字語言轉(zhuǎn)化為數(shù)學語言是學習數(shù)學學習的一項基本能力。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進行點題,并指出勾股定理只適用于直角三角形。最后向?qū)W生介紹古今中外對勾股定理的研究,對學生進行愛國主義教育和數(shù)學文化熏陶。

            (四)問題解決

            讓學生解決生活中的實際問題,學生從中能體會到成功的喜悅。完成課本“想一想”進一步體會勾股定理在實際生活中的應用,數(shù)學是與實際生活緊密相連的。

            (五)課堂小結(jié)

            主要通過學生回憶本節(jié)課所學內(nèi)容,從內(nèi)容、應用、數(shù)學思想方法、獲取新知的途徑方面先進行小結(jié),后由教師總結(jié)。

            (六)布置作業(yè)

            習題19.2(1-5)

            有興趣的同學可以查找另外的證明方法,寫出1-2種出來

            四、 設(shè)計說明

            1、本節(jié)課是公式課,根據(jù)學生的知識結(jié)構(gòu),我采用的教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結(jié)—布置作業(yè)六部分,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想。

            2、探索定理采用了面積法,引導學生利用實驗由特殊到一般再到更一般的對直角三角形三邊關(guān)系的探索和研究,得出結(jié)論。這種一般化的思想方法是認識事物規(guī)律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好思維品質(zhì)的形成有重要作用,對學生的終身發(fā)展也有一定的作用。

            3、關(guān)于練習的設(shè)計,除兩個實際問題和課本習題以外,還讓有興趣的同學可以查找另外的證明方法,寫出1-2種出來

            4、本課小結(jié)從內(nèi)容,應用,數(shù)學思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結(jié),又有方法的提煉,這樣對于學生學數(shù)學、用數(shù)學的意識是有很大的裨益的。

          【勾股定理說課稿】相關(guān)文章:

          勾股定理的說課稿04-13

          勾股定理的教案10-13

          勾股定理教案09-06

          勾股定理的教學反思09-08

          數(shù)學勾股定理教案06-22

          勾股定理的優(yōu)秀教案02-20

          勾股定理教學教案02-21

          勾股定理的教學反思09-27

          勾股定理教學反思10-17

          《勾股定理》優(yōu)秀教案優(yōu)秀12-25